0
RESEARCH PAPERS

Design and Preliminary Results of a Fuel Flexible Industrial Gas Turbine Combustor

[+] Author and Article Information
A. S. Novick, D. L. Troth

Detroit Diesel Allison, Division of General Motors Corp., Indianapolis, Ind.

H. G. Yacobucci

NASA Lewis Research Center, Cleveland, Ohio

J. Eng. Power 104(2), 368-376 (Apr 01, 1982) (9 pages) doi:10.1115/1.3227288 History: Received December 11, 1980; Online September 28, 2009

Abstract

The work described in this paper is a part of the DOE/LeRc “Advanced Conversion Technology Project” (ACT). The program is a multiple contract effort with funding provided by the Department of Energy and Technical Program Management provided by NASA LeRc. It is anticipated that future industrial gas turbine engines will require fuel flexibility. The emphasis in this paper is the fuel flexible combustor technology developed under the “Low NOx Heavy Fuel Combustor Concept Program” for application to the Detroit Diesel Allison (DDA) Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry NOx reduction methods. Due to the high levels of fuel bound nitrogen (FBN) control of NOx can be effected through a staged combustor with a rich initial combustion zone. A RICH/QUENCH/LEAN (RQL) variable geometry combustor is the technology that will be presented to achieve low NOx from alternate fuels containing FBN. The results will focus on emissions and durability for fuel flexible operation.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In