RESEARCH PAPERS: Gas Turbines: Structures and Dynamics

Friction Damping of Hollow Airfoils: Part II—Experimental Verification

[+] Author and Article Information
Y. M. EL-Aini, B. K. Benedict, W.-T. Wu

Pratt & Whitney, West Palm Beach, FL 33410-9600

J. Eng. Gas Turbines Power 120(1), 126-130 (Jan 01, 1998) (5 pages) doi:10.1115/1.2818063 History: Received February 01, 1996; Online November 19, 2007


The use of hollow airfoils in turbomachinery applications, in particular fans and turbines, is an essential element in reducing the overall engine weight. However, state-of-the-art airfoil geometries are of low aspect ratio and exhibit unique characteristics associated with plate like modes. These modes are characterized by a chordwise form of bending and high modal density within the engine operating speed range. These features combined with the mistuning effects resulting from manufacturing tolerances make accurate frequency and forced response predictions difficult and increase the potential for High Cycle Fatigue (HCF) durability problems. The present paper summarizes the results of an experimental test program on internal damping of hollow bladelike specimens. Friction damping is provided via sheet metal devices configured to fit within a hollow cavity with various levels of preload. The results of the investigation indicate that such devices can provide significant levels of damping, provided the damper location and preload is optimized for the modes of concern. The transition of this concept to actual engine hardware would require further optimization with regard to wear effects and loss of preload particularly in applications where the preload is independent of rotational speed. Excellent agreement was achieved between the experimental results and the analytical predictions using a microslip friction damping model.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In