Influence of Free-Stream Turbulence on Boundary Layer Transition in Favorable Pressure Gradients

[+] Author and Article Information
M. F. Blair

Gas Turbine Technology Group, United Technologies Research Center, East Hartford, Conn. 06108

J. Eng. Power 104(4), 743-750 (Oct 01, 1982) (8 pages) doi:10.1115/1.3227340 History: Received November 09, 1981; Online September 28, 2009


Results from an experimental study of large-scale, two-dimensional incompressible transitional boundary layer flows are presented. Tests were conducted on a heated flat wall with a zero pressure gradient and for two levels of “sink” streamwise acceleration; k = ν/U2 ∂U/∂x = 0.2 or 0.75 × 10−6 . Free-stream turbulence intensity levels ranged from approximately 0.7 to 5 percent with limited data obtained outside these values. Convective heat-transfer distributions, laminar, transitional, and fully turbulent boundary layer mean velocity and temperature profile data, and free-stream turbulence intensity distributions are presented. Boundary layer integral quantities and shape factors are also given. Transition onset Reynolds number data obtained for this program agreed well with the results of other experimental and theoretical studies for both zero pressure gradient and accelerating flows. Comparisons of the profile data and wall heat-transfer distribution data indicated that fully turbulent mean velocity profiles were achieved upstream of fully turbulent wall heat-transfer rates.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In