0
RESEARCH PAPERS

Convective Heat Transfer in a Rotating Cylindrical Cavity

[+] Author and Article Information
J. M. Owen

School of Engineering and Applied Sciences, University of Sussex, England

H. S. Onur

Makina Mühendisliḡi Bölümü, Karadeniz Üniversitesi, Trabzon, Turkey

J. Eng. Power 105(2), 265-271 (Apr 01, 1983) (7 pages) doi:10.1115/1.3227411 History: Received December 11, 1981; Online September 28, 2009

Abstract

In order to gain an understanding of the conditions inside air-cooled, gas-turbine rotors, flow visualization, laser-doppler anemometry, and heat-transfer measurements have been made in a rotating cavity with either an axial throughflow or a radial outflow of coolant. For the axial throughflow tests, a correlation has been obtained for the mean Nusselt number in terms of the cavity gap ratio, the axial Reynolds number, and rotational Grashof number. For the radial outflow tests, velocity measurements are in good agreement with solutions of the linear (laminar and turbulent) Ekman layer equations, and flow visualization has revealed the destabilizing effect of buoyancy forces on the flow structure. The mean Nusselt numbers have been correlated, for the radial outflow case, over a wide range of gap ratios, coolant flow rates, rotational Reynolds numbers, and Grashof numbers. As well as the three (forced convection) regimes established from previous experiments, a fourth (free convection) regime has been identified.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In