0
RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

Effect of Swirl on Combustion Characteristics in Premixed Flames

[+] Author and Article Information
A. K. Gupta, M. J. Lewis, S. Qi

The Combustion Laboratory, University of Maryland, Department of Mechanical Engineering, College Park, MD 20742

J. Eng. Gas Turbines Power 120(3), 488-494 (Jul 01, 1998) (7 pages) doi:10.1115/1.2818171 History: Received March 15, 1997; Online November 19, 2007

Abstract

A double concentric premixed swirl burner is used to examine the structure of two different methane-air premixed flames. Direct flame photography together with local temperature data provides an opportunity to investigate the effects of swirl number distribution in each annulus on the global and local flame structure, flame stability and local distribution of thermal signatures. An R-type thermocouple compensated for high-frequency response is used to measure the local distribution of thermal signatures in two different flames, each of which represents a different of thermal signatures in two different flames, each of which represents a different of thermal signatures in two combination of swirl number in the swirl burner. In order to improve the accuracy of the temperature data at high-frequency conditions, information on the thermocouple time constant are also obtained under prevailing conditions of local temperature and velocity by compensating the heat loss from the thermocouple sensor bead. These results assist in quantifying the degree of thermal nonuniformities in the flame signatures as affected by the distribution of swirl and to develop strategies for achievinguniform distribution of temperatures in flames.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In