Unsteady Aerodynamics and Gapwise Periodicity of Oscillating Cascaded Airfoils

[+] Author and Article Information
F. O. Carta

United Technologies Research Center, East Hartford, Conn. 06108

J. Eng. Power 105(3), 565-574 (Jul 01, 1983) (10 pages) doi:10.1115/1.3227455 History: Received December 22, 1981; Online September 28, 2009


Tests were conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade and over the chord of the center blade. The pressure data were reduced to Fourier coefficient form for direct comparison and were also processed to yield integrated loads and, particularly, the aerodynamic damping coefficient. In addition, results from two unsteady theories for cascaded blades with nonzero thickness and camber were compared with the experimental measurements. The three primary results that emerged from this investigation were: (a) from the leading edge plane blade data, the cascade was judged to be periodic in unsteady flow over the range of parameters tested, (b) as before, the interblade phase angle was found to be the single most important parameter affecting the stability of the oscillating cascade blades, and (c) the real blade theory and the experiment were in excellent agreement for the several cases chosen for comparison.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In