0
RESEARCH PAPERS: Gas Turbines: Structures & Dynamics

A Bulk-Flow Analysis of Multiple-Pocket Gas Damper Seals

[+] Author and Article Information
J. Li, L. San Andrés, J. Vance

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

J. Eng. Gas Turbines Power 121(2), 355-363 (Apr 01, 1999) (9 pages) doi:10.1115/1.2817128 History: Received April 01, 1998; Online December 03, 2007

Abstract

A bulk-flow model for calculation of the dynamic force characteristics in a single cavity, multiple-pocket gas damper seal is presented. Flow turbulence is accounted for by using turbulent shear stress parameters and Moody’s friction factors in the circumferential momentum equation. Zeroth-order-equations describe the isothermal flow field for a centered seal, and first-order equations govern the perturbed flow for small amplitude rotor lateral motions. Comparisons to limited measurements from a four-pocket gas damper seal show the current model to predict well the mass flow rate and the direct damping coefficient. For a reference two-bladed teeth-on-stator labyrinth seal, the current model predicts similar rotordynamic coefficients when compared to results from a two control volume, bulk-flow model. Force coefficients from a reference single-cavity, four pocket gas damper depend on the rotor speed and pressure drop with magnitudes decreasing as the rotor whirl frequency increases. The multiple-pocket gas damper seal provides substantially more damping than a conventional labyrinth seal of the same dimensions. The damper seal cross-coupled stiffness coefficients are small though sensitive to the inlet circumferential preswirl flow.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In