0
RESEARCH PAPERS: Gas Turbines: Heat Transfer

Correlations of the Convection Heat Transfer in Annular Channels With Rotating Inner Cylinder

[+] Author and Article Information
R. Jakoby, S. Kim, S. Wittig

Lehrstuhl und Institut für, Department Mechanical Thermische Strömungsmaschinen, Universität Karlsruhe (T.H.), Kaiserstraße 12, 76128 Karlsruhe, Germany

J. Eng. Gas Turbines Power 121(4), 670-677 (Oct 01, 1999) (8 pages) doi:10.1115/1.2818524 History: Received February 28, 1998; Revised June 23, 1999; Online December 03, 2007

Abstract

In the internal air system of gas turbine engines or generators, a large variety of different types of annular channels with rotating cylinders are found. Even though the geometry is very simple, the flow field in such channels can be completely three-dimensional and also unsteady. From the literature it is well-known that the basic two-dimensional flow field breaks up into a pattern of counter-rotating vortices as soon as the critical speed of the inner cylinder is exceeded. The presence of a superimposed axial flow leads to a helical shape of the vortex pairs that are moving through the channel. For the designer of cooling air systems there are several open questions. Does the formation of a Taylor-vortex flow field significantly affect the convective heat transfer behavior of the channel flow? Is there a stability problem even for high axial Reynolds-numbers and where is the location of the stability boundary? After all, the general influence of rotation on the heat transfer characteristics has to be known. By the results of flow field and heat transfer measurements, the impact of rotation and the additional influence of Taylor-vortex formation on the heat transfer characteristics in annular channels with axial throughflow will be discussed. The flow field was investigated by time-dependant LDA-measurements, which revealed detailed information about the flow conditions. By a spectral analysis of the measured data, the different flow regimes could be identified. Based on these results, the heat transfer from the hot gas to the rotating inner shaft was determined with a steady-state method. Thus, the influence of the different physical phenomena such as rotation with and without Taylor-vortex formation or the flow development could be separated and quantified. Finally, correlations of the measured results were derived for technical applications.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In