0
TECHNICAL PAPERS: Gas Turbines: Ceramics

A New Probabilistic Approach for Accurate Fatigue Data Analysis of Ceramic Materials

[+] Author and Article Information
Bjoern Schenk, Peggy J. Brehm, M. N. Menon

Honeywell Engines & Systems, P.O. Box 52181, Phoenix, AZ 85072-2181

William T. Tucker

General Electric Corporation, Corporate Research and Development Center, Schenectady, NY 12301

Alonso D. Peralta

State University of New York, Mechanical Engineering Department, Stony Brook, NY 11794-2300

J. Eng. Gas Turbines Power 122(4), 637-645 (May 15, 2000) (9 pages) doi:10.1115/1.1287492 History: Received March 09, 1999; Revised May 15, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Weibull,  W., 1939, “A Statistical Theory of the Strength of Materials,” R. Swedish Acad. Eng. Proc., 151, 1–45.
Batdorf,  S. B., and Heinisch,  H. L., 1978, “Weakest Link Theory Reformulated for Arbitrary Failure Criterion,” ASME J. Appl. Mech., 61, pp. 355–358.
Lamon,  J., and Evans,  A. G., 1983, “Statistical Analysis of Bending Strengths for Brittle Solids: A Multiaxial Fracture Problem,” J. Am. Ceram. Soc., 66, No. 3, pp. 177–182.
Schenk, B., Peralta, A. D., Brehm, P., and Menon, M. N., 1998, “CERAMIC/ERICA: AlliedSignal Engines’ Life Prediction Codes for Structural Ceramic Applications,” Proceedings of the World Ceramics Congress CIMTEC 1998, Florence, Italy.
Cuccio, J., Peralta, A. D., Song, J., Brehm, P., Johnson, C. A., Tucker, W. T., and Fang, H., 1994, “Probabilistic Methods for Ceramic Component Design and Implications for Standards,” in Life Prediction Methodologies and Data for Ceramic Materials, C. R. Brinkman and S. F. Duffy, eds., ASTM STP1201, pp. 291–308.
Nemeth, N. N., Powers, L. M., Janosik, L. A., and Gyekenyesi, J. P., 1994, “Time-Dependent Reliability Analysis of Monolithic Ceramic Components Using The CARES/Life Integrated Design Program,” in Life Prediction Methodologies and Data for Ceramic Materials, C. R. Brinkman and S. F. Duffy, eds., ASTM STP1201, pp. 390–408.
Johnson, C. A., and Tucker, W. T., 1992, “Advanced Statistical Concepts of Fracture in Brittle Materials,” in Engineered Materials Handbook—Volume 4; Ceramics and Glasses, S. J. Schneider, Chairman, ASM International, pp. 709–715.
Johnson, C. A., and Tucker, W. T., 1994, “Weibull Estimators for Pooled Fracture Data,” in Life Prediction Methodologies and Data for Ceramic Materials, C. R. Brinkman and S. F. Duffy, eds., ASTM STP1201, pp. 250–288.
Tucker, W. T., and Johnson, C. A., 1994, “The Multiaxial Equivalent of Stressed Volume,” in Life Prediction Methodologies and Data for Ceramic Materials, C. R. Brinkman and S. F. Duffy, eds., ASTM STP1201, pp. 265–279.
Trantina, G. G., and Johnson, C. A., 1983, “Probabilistic Defect Size Analysis Using Fatigue and Cyclic Crack Growth Rate Data,” in Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance, J. M. Bloom and J. C. Ekvall, eds., ASTM STP798, pp. 67–78.
Sturmer,  G., Schulz,  A., and Wittig,  S., 1993, “Lifetime Prediction for Ceramic Gas Turbine Components,” ASME J. of Gas Turbines and Pwr., 115, No. 1, pp. 70–75.
Nelson, W., Applied Life Data Analysis, Wiley, New York.
Cox, D. R., and Oakes, D., 1984, Analysis of Survival Data, Chapman and Hall, New York.
Wu, D. C., Peralta, A. D., Menon, M. N., and Cuccio, J. C., 1995, “Subcritical Crack Growth Life Prediction For Ceramic Components Of Advanced Heat Engines,” ASME Paper 95-GT-236.
Fett,  T., and Munz,  D., 1991, “Methods of Determining Subcritical Crack Growth by Static Lifetime Tests With Natural and Artificial Flaws,” J. Test Eval., 19, No. 6, pp. 461–466.
Schenk, B., Brehm, P. J., Menon, N. M., Tucker, W. T., and Peralta, A. D., 1999, “Status of the CERAMIC/ERICA Probabilistic Life Prediction Codes Development for Structural Ceramic Applications,” ASME Paper 99-GT-318.

Figures

Grahic Jump Location
Conventional fatigue data analysis is not capable of accounting for runouts correctly: (a) only static fatigue failures; (b) static fatigue failures plus some runouts; and (c) static fatigue failures plus all runouts
Grahic Jump Location
Resulting Weibull plot for specimen or component life prediction including likelihood ratio confidence bounds
Grahic Jump Location
Pooled data analysis of AS-800 Silicon Nitride fast fracture and static fatigue data (1204°C/2200°F)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In