0
TECHNICAL PAPERS: Gas Turbines: Combustion and Fuels

Prediction and Measurement of Thermoacoustic Improvements in Gas Turbines With Annular Combustion Systems

[+] Author and Article Information
U. Krüger, J. Hüren

B&B-AGEMA, Gesellschaft für Energietechnische Maschinen und Anlagen, Aachen, Germany

S. Hoffmann, W. Krebs, P. Flohr

Siemens AG, Power Generation Group KWU, Mülheim, Germany

D. Bohn

Institute of Steam and Gas Turbines, Aachen University of Technology, Aachen, Germany

J. Eng. Gas Turbines Power 123(3), 557-566 (Oct 01, 2000) (10 pages) doi:10.1115/1.1374437 History: Received October 01, 1999; Revised October 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Putnam,  A. A., and Dennis,  W. R., 1955, “Suppression of Burner Oscillations by Acoustical Dampers,” Trans. ASME, 77, pp. 875–883.
Gysling, D. L., Copeland, G. S., McCormick, D. C., and Proscia, W. M., 1998, “Combustion System Damping Augmentation with Helmholtz Resonators,” ASME Paper No. 98-GT-268.
Schlein, B. C., Anderson, D. A., Beukenberg, M., Mohr, K. D., Leiner, H. L., and Träptau, W., 1998, “Development History and Field Experience of the First FT8 Gas Turbine with Dry Low NOx Combustion System,” ASME Paper No. 99-GT-241.
Pandalai, R. P., and Mongia, H. C., 1998, “Combustion Instability Characteristics of Industrial Engine Dry Low Emission Combustion Systems,” Paper No. AIAA 98-3379.
Candel, S. M., 1992, “Combustion Instabilities Coupled by Pressure Waves and Their Active Control,” The Twenty-Fourth (International) Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1277–1296.
McManus,  K. R., Poinsot,  T., and Candel,  S. M., 1993, “A Review of Active Control of Combustion Instabilities,” Prog. Energy Combust. Sci., 19, pp. 1–29.
Hibshman, J. R., Cohen, J. M., Banaszuk, A., Anderson, T. J., and Alholm, H. A., 1999, “Active Control of Combustion Instability in a Liquid-Fueled Sector Combustor,” ASME Paper No. 99-GT-215.
McManus, K. R., Magill, J. C., and Miller, M. F., 1998, “Combustion Instability Suppression in Liquid-Fueled Combustors,” AIAA 98-0642.
Paschereit, C. O., Gutmark, E., and Weisenstein, W., 1999, “Suppression of Acoustically Excited Combustion Instability in Gas Turbines,” Paper No. AIAA-99-1986.
Paschereit, C. O., Gutmark, E., and Weisenstein, W., 1999, “Control of Combustion-Driven Oscillations by Equivalence Ratio Modulations,” ASME Paper No. 99-GT-118.
Richards, G. A., Yip, M. J., Robey, E., Cowell, L., and Rawlins, D., 1997, “Combustion Oscillation Control by Cyclic Fuel Injection,” ASME Paper No. 95-GT-224.
Hermann, J., Hantschk, C. C., Zangl, P., Gleis, S., Vortmeyer, D., Orthmann, A., Seume, J. R., Vortmeyer, N., and Krause, W., 1997, “Aktive Stabilitätskontrolle an einer 170 MW Gasturbine,” 18, Deutsch-Niederländischer Flammentag 97, Delft, VDI-Berichte 1313, pp. 337–344.
Mahmoud, H., Fleifil, M., Ghoneim, Z., and Ghoniem, A. F., 1997, “Active Control of Thermoacoustic Instability Using LQR-Techniques,” ASME Joint Power Generation Conference 1997, Vol. 1, ASME, New York, pp. 299–307.
Bloxsidge,  G. J., Dowling,  A. P., Hooper,  N., and Langhorne,  P. J., 1989, “Active Control of Reheat Buzz,” AIAA J., 26, No. 7.
Straub, D. L., and Richards, G. A., “Effect of Axial Swirl Vane Location on Combustion Dynamics,” ASME Paper No. 99-GT-109.
Steele, R. C., Cowell, L. H., Cannon, S. M., and Smith, C. E., 1999, “Passive Control of Combustion Instability in Lean Premixed Combustors,” ASME Paper No. 99-GT-052.
Kremer,  H., 1979, “Schwingungen in Feuerräumen,” Gas Wärme International, 28, No. 8.
Schimmer, H., and Vortmeyer, D., 1977, Selbsterregte Schwingungen in Brennkammern, Nr. 286, VDI-Berichte, pp. 21–28.
Krüger, U., Hüren, J., Hoffmann, S., Krebs, W., and Bohn, D., 1999, “Prediction of Thermoacoustic Instabilities With Focus on the Dynamic Flame Behavior for the 3A-Series Gas Turbines of Siemens KWU,” ASME Paper No. 99-GT-111.
Berenbrink, D., and Hoffmann, S., 2000, “Suppression of Combustion Dynamics by Active and Passive Means,” ASME Paper No. 2000-GT-0079.
Munjal, M. L., 1987, Acoustics of Ducts and Mufflers, John Wiley and Sons, New York.
Bodén,  H., and Abom,  M., 1986, “Influence of Errors in the Two-Microphone Method for Measuring Acoustic Properties in Ducts,” J. Acoust. Soc. Am., 79, pp. 541–549.
Meyer, E., and Neumann, E. G., 1967, “Physikalische und technische Akustik,” Vieweg-Verlag, Brauschweig, Germany.
Heinig,  K. E., 1983, “Sound Propagation in Multistage Axial Flow Gas Turbine Engines,” AIAA J., 21, pp. 98–105.
Bohn, D., and Deuker, E., 1993, “An Acoustical Model to Predict Combustion Driven Oscillations,” 20th International Congress on Combustion Engines (CIMAC), London.
Faber, Ch., 1991, “Entwicklung eines Rechenmodells zur Vorausberechnung des Stabilitätsverhaltens von Brennkammersystemen,” internal report, Institute of Steam and Gas Turbines, RWTH Aachen.
Baade, P. K., 1974, “Selbsterregte Schwingungen in Gasbrennern,” Klima, Kälte, Anlagenbau, Vol. 57, pp. 167–176.
Krüger, U., Hüren, J., Hoffmann, S., Krebs, W., and Bohn, D., 1999, “Combustion-Driven Oscillations: Numerical Prediction of Dynamic Behavior of Gas Turbine Flames,” AIAA Paper No. 99–1910.
Bohn, D., Deutsch, G., and Krüger, U., 1996, “Numerical Prediction of the Dynamic Behavior of Turbulent Diffusion Flames,” ASME Paper No. 96-GT-133.
Bohn, D., Li. Y., Matouschek, G., and Krüger, U., 1997, “Numerical Prediction of the Dynamic Behaviour of Premixed Flames Using Systematically Reduced Multi-Step Mechanisms,” ASME Paper No. 97-GT-265.
Krüger, U., Hoffmann, S., Krebs, W., Judith, H., Bohn, D., and Matouschek, G., 1998, “Influence of Turbulence on the Dynamic Behavior of Premixed Flames,” ASME 98-GT-232.
Chung,  J. Y., and Blaser,  D. A., 1980, “Transfer Function Method of Measuring In-Duct Acoustic Properties: I, Theory; II, Experiment,” J. Acoust. Soc. Am., 68, pp. 907–921.
Levine,  H., and Schwinger,  J., 1946, “On the Radiation of Sound From an Unflanged Circular Pipe,” Physical Review, 73, pp. 383–406.
Flohr, P., 1999, internal report, Siemens KWU.
Prade, B., Streb, H., Berenbrink, P., Schetter, B., and Pyka, G., 1996, “Development of an Improved Hybrid Burner-Initial Operating Experience in a Gas Turbine,” ASME Paper No. 96-GT-045.

Figures

Grahic Jump Location
Wave propagation in a tube including a flame
Grahic Jump Location
Siemens 3A-Series HBR® turbine combustor
Grahic Jump Location
Acoustic network for combustion chamber in circumferential direction in detail
Grahic Jump Location
Test rig for the measurement of the burner impedance
Grahic Jump Location
Acoustical model for the prediction of the burner impedance
Grahic Jump Location
Burner impedance in the test rig
Grahic Jump Location
Original and improved burner impedance in the gas turbine combustion system
Grahic Jump Location
Stability analysis with improved burner impedance (clockwise direction)
Grahic Jump Location
Stability analysis with improved burner impedance (counterclockwise direction)
Grahic Jump Location
Schematic of cylindrical burner outlet (CBO) layout (Berendbrink and Hoffman 20)
Grahic Jump Location
Acoustic network for the detuned system
Grahic Jump Location
Stability analysis for the detuned system (clockwise direction)
Grahic Jump Location
Stability analysis for the detuned system (counterclockwise direction)
Grahic Jump Location
Stability limits for different cylindrical burner outlet (CBO) configurations (Berendbrink and Hoffman 19)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In