0
TECHNICAL PAPERS: Gas Turbines: Combustion and Fuels

Numerical Simulation of Swirl-Stabilized Premixed Flames With a Turbulent Combustion Model Based on a Systematically Reduced Six-Step Reaction Mechanism

[+] Author and Article Information
D. E. Bohn

J. Lepers

Institute of Steam and Gas Turbines, Aachen University of Technology, Templergraben 55, Aachen 52056, Germany

J. Eng. Gas Turbines Power 123(4), 832-838 (Oct 01, 2000) (7 pages) doi:10.1115/1.1377597 History: Received October 01, 1999; Revised October 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zimont, V., Polifke, W., Bettelini, M., and Weisenstein, W., 1997, “An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure,” ASME Paper 97-GT-395.
Nicol, D. G., Malte, P. C., Hamer, A. J., Roby, R. J., and Steele, R. C., 1998, “Development of a Five-Step Global Methane Oxidation—NO Formation Mechanism for Lean Premixed Gas Turbine Combustion,” ASME Paper 98-GT-185.
Hamer, A. J., Roby, R. J., and Klassen, M. S., 1998, “Comparison of Reduced Chemical Kinetic Mechanisms for Pollutant Emissions Predictions in Gas Turbines,” ASME IJPGC meeting, Baltimore, MD.
Polifke, W., Döbbeling, K., Sattelmayer, T., Nicol, D. G, and Malte, P. C., 1995, “A NOx Prediction Scheme for Lean-Premixed Gas Turbine Combustion Based on Detailed Chemical Kinetics,” ASME Paper 95-GT-108.
Polifke, W., Döbbeling, K., and Sattelmayer, T., 1995, “A Computational Model for Lean-Premixed, Highly Turbulent Combustion,” CIMAC 21st International Symposium on Combustion Engines, Interlaken, Switzerland.
Peters, N., and Rogg, B., 1993, “Reduced Kinetic Mechanisms for Applications in Combustion Systems,” (Lecture Notes in Physics), Springer-Verlag, Berlin.
Bohn, D., Krüger, U., and Matouschek, G., 1995, “Numerical Simulation of Premixed Flame Combustion using Systematically Reduced Reaction Mechanisms,” International Gas Turbine Congress, Yokohama, JGTC-40, II, pp. 275–282.
Bohn, D., and Matouschek, G., 1997, “Numerical Combustion Simulations and Pollutant Prediction of Low- to Medium-Btu Gases in Premixed Flames using Systematically Reduced Multi-Step Reaction Mechanisms,” 4th Int. Conf. on Technologies and Combustion for a Clean Environment, Lisbon, Portugal.
Bohn, D., and Lepers, J., 1999, “Numerical Simulation of Turbulent Premixed Combustion Using a Joint-PDF Approach Based on a Systematically Reduced Multi-Step Reaction Mechanism,” ASME-Paper 99-GT-272.
Libby, P. A., and Williams, F. A., eds., 1994, Turbulent Reacting Flows, Academic Press, London.
Müller, U. C., 1989, “Der Einfluß von Strahlungsverlusten auf die thermische NO-Bildung in laminaren CH4-Diffusionsflammen,” Diplomarbeit, Institut für Technische Mechanik, Aachen University of Technology.
Philipp, M., 1991, “Experimentelle und theoretische Untersuchungen zum Stabilitätsverhalten von Drallflammen mit zentraler Rückströmzone,” Ph.D. thesis, University of Karlsruhe, Germany, (in German).
Kee, R. J., Rupley, F. M., and Miller, J. A., 1990, “The Chemkin Thermodynamic Data Base,” Sandia Report SAND87-8215B.
Peters, N., 1992, “Fifteen Lectures on Laminar and Turbulent Combustion,” ERCOFTAC Summer School, Aachen, Germany.
Nicol,  D. G., Steele,  R. C., Marinov,  N. M., and Malte,  P. C., 1995, “The Importance of the Nitrous-Oxide Pathway to NOx in Lean-Premixed Combustion,” Trans. ASME, 117, pp. 100–111.
Steele, R. C., Jarrett, A. C., Malte, P. C., Tonouchi, J. H., and Nicol, D. G., 1997, “Variables Affecting NOx-Formation in Lean-Premixed Combustion,” ASME J. Eng. Gas Turbines Power, 119 .
Miller, J. A., and Bowman, C. T., 1989, “Mechanism and Modelling of Nitrogen Chemistry in Combustion,” Prog. Energy Combust. Sci., 5 .
Göttgens, J., 1995, “Berechnung einer laminaren Diffusionsflamme mit reduzierter chemischer Kinetik” Ph.D. thesis, Aachen University of Technology, (in German).
van Doormal,  J. P., and Raithby,  G. D., 1984, “Enhancements of the SIMPLE Method for Predicting Incompressible Flows,” Numer. Heat Transfer, 7, pp. 147–163.
Rhie, C. M., 1981, “A Numerical Study of the Flow Past an Isolated Airfoil With Separation,” Ph.D. thesis, University of Illinois at Urbana-Champaign.
Rhie,  C. M., and Chow,  W. L., 1983, “Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation,” AIAA J., 21, pp. 1527–1532.
Leuckel, W., Lauer, G., Hirsch, C., and Habisreuther, P., 1994, “Mathematische Modellierung der Wechselwirkung von Turbulenz und Reaktion unter den in Gasturbinenbrennkammern vorliegenden Bedingungen,” AG Turbo (German Research Cooperation on High Temperature Gas Turbines), Turboflam Vorhaben 3.1.3.4, Schlußbericht, (in German).

Figures

Grahic Jump Location
Numerical discretization
Grahic Jump Location
Numerical results for combustion at 1 atm and TIN=300 K
Grahic Jump Location
Species distributions at axial positions x/Do=0.5 and x/Do=1.0 (1 atm, TIN=300 K)
Grahic Jump Location
Boundary conditions for computations under typical gas turbine combustor inlet conditions
Grahic Jump Location
Comparison of computations for atmospheric and elevated pressure
Grahic Jump Location
Concentrations of nitrogen oxides at axial position x/Do=1.0

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In