TECHNICAL PAPERS: Gas Turbines: Combustion and Fuel

Implementation and Validation of a New Soot Model and Application to Aeroengine Combustors

[+] Author and Article Information
M. Balthasar, F. Mauss

  Division of Combustion Physics, Lund Institute of Technology, 22100 Lund, Sweden

M. Pfitzner, A. Mack

BMW Rolls-Royce AeroEngines, Eschenweg 11, D-15827 Dahlewitz, Germany

J. Eng. Gas Turbines Power 124(1), 66-74 (Oct 01, 2000) (9 pages) doi:10.1115/1.1377596 History: Received October 01, 1999; Revised October 01, 2000
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Mauss, F., 1997, “Entwicklung eines kinetischen Modells der Russbildung mit schneller Polymerization,” Ph.D. thesis, RWTH, Aachen.
Balthasar,  M., Heyl,  A., Mauss,  F., Schmitt,  F., and Bockhorn,  H., 1996, “Flamelet Modelling of Soot Formation in Laminar Ethyne/Air Diffusion Flames,” Proc. Combust. Inst., 26, p. 2369.
Chevalier, C., Louessard, P., Mueller, U. C., and Warnatz, J., 1990, “A Detailed Low-Temperature Reaction Mechanism of n-Heptane Auto-Ignition,” Int. Symp. on Diagnostics and Modelling of Combustion in Internal Engines COMODIA 90, Kyoto.
Baulch,  D. L., Cobos,  C. J., Cox,  R. A., Frank,  P., Hayman,  G., Just,  T., Kerr,  J. A., Murrells,  T., Pilling,  M. J., Troe,  J., Walker,  R. W., and Warnatz,  J., 1992, “Evaluated Kinetic Data for Combustion Modelling,” J. Phys. Chem. Ref. Data, 21, p. 411.
Smoluchowski,  M. V., 1917, Z. Phys. Chem.,92, p. 129.
Frenklach,  M., and Warnatz,  J., 1987, “Detailed Modeling of PAH-Profiles in a Sooting Low Pressure Acetylene Flame,” Combust. Sci. Technol., 51, p. 265.
Frenklach,  M., and Harris,  S. J., 1987, “Aerosol Dynamics Modeling Using the Method of Moments,” J. Colloid Interface Sci., 118, No. 1, p. 252.
Peters,  N., 1984, “Laminar Diffusion Flamelet Models in Non-premixed Turbulent Combustion,” Prog. Energy Combust. Sci., 10, p. 319.
Pitsch, H., Barths, H., and Peters, N., 1996, “Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach,” SAE-paper 962057.
Mauss,  F., Keller,  D., and Peters,  N., 1990, “A Lagrangian Simulation of Flamelet Extinction and Re-Ignition in Turbulent Jet Diffusion Flames,” Proc. Combust. Inst., 23, p. 693.
Barths,  H., Peters,  N., Brehm,  N., Mack,  A., Pfitzner,  M., and Smiljanovski,  V., 1998, “Simulation of Pollutant Formation in a Gas-Turbine Combustor Using Unsteady Flamelets,” Proc. Combust. Inst., 27, p. 1841.
Bai,  X. S., Balthasar,  M., Mauss,  F., and Fuchs,  L., 1998, “Detailed Soot Modelling in Turbulent Jet Diffusion Flames,” Proc. Combust. Inst., 27, p. 1623.
Young,  K. J., and Moss,  J. B., 1995, “Modelling Sooting Turbulent Jet Flames Using an Extended Flamelet Technique,” Combust. Sci. Technol., 105, p. 33.
Dederichs, A., Balthasar, M., and Mauss, F., 1999, “Pollutant Formation in Turbulent Non-Premixed Combustion Using Different Flamelet Models,” 17th International Colloquium on the Dynamics of Explosions and Reactive Systems, ICDERS, Heidelberg, Germany.
Mauss,  F., Schäfer,  T., and Bockhorn,  H., 1994, “Inception and Growth of Soot Particles in Dependence of the Surrounding Gas Phase,” Combust. Flame, 99, p. 697.
Karlsson, A., Magnusson, I., Balthasar, M., and Mauss, F., 1998, “Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model,” SAE-paper 981022.
Leung,  K. M., Lindstedt,  R. P., and Jones,  W. P., 1991, “A Simplified Reaction Mechanism for Soot Formation in Nonpremixed Flamesl,” Combust. Flame, 87, p. 289.
Brocklehurst, H. T., Priddin, C. H., and Moss, J. B., 1997, “Soot Predictions Within an Aero Gas Turbine Combustion Chamber,” ASME paper 97-GT-148.
Brehm, N., Schilling, T., Mack, A., and Kappler, G., 1998, “NOx Reduction in a Fuel-Staged Combustor by Optimization of the Mixing Process and the Residence Time,” AVT (AGARD) Symposium on Gas Turbine Engine Combustion, Emissions and Alternative Fuels, Lisbon, Portugal.
Frenklach,  M., and Wang,  H., 1990, “Detailed Modelling of Soot Particle Nucleation and Growth,” Proc. Combust. Inst., 23, p. 1559.


Grahic Jump Location
BRR staged combustor (main zone plane): contours of particle inception source term
Grahic Jump Location
BRR staged combustor (main zone plane): contours of surface growth source term
Grahic Jump Location
BRR staged combustor (main zone plane): contours of oxidation source term
Grahic Jump Location
BRR staged combustor: isosurface of soot mass fraction Ys=5*10−4 colored by temperature contours
Grahic Jump Location
Particle inception rate in the mixture fraction scalar dissipation rate space as calculated from the flamelet model
Grahic Jump Location
(a) The beta function fitted to the source term of particle inception (p=1 bar,Tox=850 K, χ=700 s−1 ); (b) parameters of oxidation soot source term—symbols: flamelet calculations, lines: fits
Grahic Jump Location
BRR staged combustor configuration
Grahic Jump Location
BRR staged combustor computational grid
Grahic Jump Location
BRR staged combustor temperature contours (main zone plane)
Grahic Jump Location
BRR staged combustor (main zone plane: contours of soot volume fraction (log10)
Grahic Jump Location
Schematic representation of the soot model
Grahic Jump Location
Interface between the CFD code and the subroutine containing the rates of soot formation
Grahic Jump Location
BRR staged combustor (main zone plane): contours of mean mixture fraction (log10)
Grahic Jump Location
Comparison between measured (symbols) and calculated (lines) soot volume fraction on the center line of a turbulent jet diffusion flame. Calculations have been done with surface reactions proportional to soot surface (line) and proportional to soot volume fraction (broken line).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In