0
TECHNICAL PAPERS: Gas Turbines: Combustion and Fuels

A Combined Eulerian and Lagrangian Method for Prediction of Evaporating Sprays

[+] Author and Article Information
M. Burger, G. Klose, G. Rottenkolber, R. Schmehl, D. Giebert, O. Schäfer, R. Koch, S. Wittig

Institut für Thermische Strömungsmachinen, Universität Karlsruhe, 76128 Karlsruhe, Germany

J. Eng. Gas Turbines Power 124(3), 481-488 (Jun 19, 2002) (8 pages) doi:10.1115/1.1473153 History: Received December 01, 2000; Revised March 01, 2001; Online June 19, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Crowe,  C. T., 1982, “Review—Numerical Models for Dilute Gas-Particle Flows,” ASME J. Fluids Eng., 104, pp. 297–303.
Klose, G., Schmehl, R., Meier, R., Maier, G., Koch, R., Wittig, S., Hettel, M., Leuckel, W., and Zarzalis, N., 2000, “Evaluation of Advanced Two-Phase Flow and Combustion Models for Predicting Low Emission Combustors,” ASME Paper 00-GT-133.
Hallmann,  M., Scheurlen,  M., and Wittig,  S., 1995, “Computation of Turbulent Evaporating Sprays: Eulerian Versus Lagrangian Approach,” ASME J. Eng. Gas Turbines Power, 117, pp. 112–119.
Schmehl, R., Rosskamp, H., Willmann, M., and Wittig, S., 1998, “CFD Analysis of Spray Propagation and Evaporation Including Wall Film Formation and Spray/Film Interactions,” ILASS ’98 Europe, pp. 546–555.
Preclik, D., Estublier, D., and Wennerberg, D., 1995, “An Eulerian-Lagrangian Approach to Spray Combustion Modeling for Liquid Bi-Propellant Rocket Motors,” AIAA, Technical Report 95-2779.
Ishii, M., 1975, Thermo-Fluid Dynamic Theory of Two Phase Flow, Eyrolles.
Launder,  B. E., and Spalding,  D. B., 1974, “The Numerical Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 3, pp. 269–289.
Rodi, W., 1984, Turbulence Models and Their Application in Hydraulics—A State of the Art Review, IAHR.
Mellville,  W. K., and Bray,  K. N. C., 1979, “A Model of the Two-Phase Turbulent Jet,” Int. J. Heat Mass Transf., 22, pp. 647–656.
Krämer, M., 1988, “Untersuchungen zum Bewegungsverhalten von Tropfen in turbulenter Strömung in Hinblick auf Verbrennungsvorgänge,” dissertation, Universität Karlsruhe.
Snyder,  W., and Lumley,  J. L., 1971, “Some Measurements of Particle Velocity Autocorrelation Functions in a Turbulent Flow,” J. Fluid Mech., 48, pp. 41–71.
Klose, G., Rembold, B., Koch, R., and Wittig, S., 2000, “Comparison of State of the Art Droplet-Turbulence Interaction Models for Aero-Engine Combustor Conditions,” Proceedings of the Third International Symposium on Turbulence, Heat and Mass Transfer, T. Tsuji, Y. Nagano, and K. Hanjalić, eds., Nagoya, Apr., 3 , pp. 763–770.
Wiegand,  H., 1987, “Die Einwirkung eines ebenen Strömungsfeldes auf frei bewegliche Tropfen und ihren Widerstandsbeiwert im Reynoldszahlenbereich von 50 bis 2000,” Fortschrittberichte VDI, 7(120).
Gosman,  A. D., and Ioannides,  E., 1983, “Aspects of Computer Simulation of Liquid-Fueled Combustors,” J. Energy, 7(6), pp. 482–490.
Milojević,  D., 1990, “Lagrangian Stochastic-Deterministic (LSD) Predictions of Particle Dispersion in Turbulence,” Part. Part. Syst. Charact., 7, pp. 181–190.
Faeth,  G. M., 1983, “Evaporation and Combustion of Sprays,” Prog. Energy Combust. Sci., 9, pp. 1–76.
Sirignano,  W. A., 1984, “Fuel Droplet Vaporization and Spray Combustion Theory,” Prog. Energy Combust. Sci., 9, pp. 291–322.
Aggarwal,  S. K., and Peng,  F., 1995, “A Review of Droplet Dynamics and Vaporization Modeling for Engineering Calculations,” ASME J. Eng. Gas Turbines Power, 117, pp. 453–461.
Abramzon,  B., and Sirignano,  W. A., 1989, “Droplet Vaporisation Models for Spray Combustion Calculations,” Int. J. Heat Mass Transf., 32, pp. 1605–1618.
Samenfink, W., 1997, “Grundlegende Untersuchung zur Tropfeninteraktion mit schubspannungsgetriebenen Wandfilmen,” dissertation, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe (TH).
Coghe, A., Cossali, G. E., and Marengo, M., 1995, “A First Study About Single Droplet Impingement on Thin Liquid Film in a Low Laplace Number Range,” ICLASS-95, Nürnberg, pp. 285–293.
Crowe,  C. T., Sharma,  M. P., and Stock,  D. E., 1977, “The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows,” ASME J. Fluids Eng., 99, pp. 325–332.
Rottenkolber, G., Kölmel, A., Dullenkopf, K., Wittig, S., Feng, B., and Spicher, U., 1999, “Influence of Mixture Preparation on Combustion and Emissions Inside an SI Engine by Means of Visualization, PIV and IR Thermography During Cold Operating Conditions,” SAE Tech. Paper Nr. 1999-01-3644.
Schmehl, R., Maier, G., and Wittig, S., 2000, “CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor,” 8th International Conference on Liquid Atomization and Spray Systems, ICLASS 2000, Pasadena, CA, July 16–20.
Schmehl, R., Klose, G., Maier, G., and Wittig, S., 1998, “Efficient Numerical Calculation of Evaporating Sprays in Combustion Chamber Flows,” 92nd Symp. on Gas Turbine Combustion, Emissions and Alternative Fuels, RTO Meeting Proceedings 14, Lisbon.

Figures

Grahic Jump Location
Side view of fuel spray in intake manifold
Grahic Jump Location
Structure of the hybrid procedure
Grahic Jump Location
Position of PIV light sheet
Grahic Jump Location
Discretization of droplet initial conditions
Grahic Jump Location
Predicted and measured velocity vector fields and number density distributions
Grahic Jump Location
Comparison of gas velocity
Grahic Jump Location
Comparison of droplet velocity

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In