0
TECHNICAL PAPERS: Gas Turbines: Combustion and Fuel

Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner

[+] Author and Article Information
M. Kröner, J. Fritz, T. Sattelmayer

Lehrstuhl für Thermodynamik, Technische Universität München, 85747 Garching, Germany

J. Eng. Gas Turbines Power 125(3), 693-700 (Aug 15, 2003) (8 pages) doi:10.1115/1.1582498 History: Received December 01, 2001; Revised March 01, 2002; Online August 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fritz, J., Kröner, M., and Sattelmayer, T., 2001, “Flashback in a Swirl Burner With Cylindrical Premixing Zone,” ASME Paper No. 2001-GT-0054.
McCormack,  P. D., Scheller,  K., Mueller,  G., and Tisher,  R., 1972, “Flame Propagation in a Vortex Core,” Combust. Flame, 19, pp. 297–303.
Asato,  K., Wada,  H., Hiruma,  T., and Takeuchi,  Y., 1997, “Characteristics of Flame Propagation in a Vortex Core: Validity of a Model for Flame Propagation,” Combust. Flame, 110, pp. 418–428.
Chomiak, J., 1997, “Dissipation Fluctuations and the Structure and Propagation of Turbulent Flames in Premixed Gases at High Reynolds Numbers,” 17th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1665–1673.
Umemura,  A., and Tomita,  K., 2001, “Rapid Flame Propagation in a Vortex Tube in Perspective of Vortex Breakdown Phenomena,” Combust. Flame, 125, pp. 820–838.
Ishizuka, S., Hamasaki, T., Koumura, K., and Hasegawa, R., 1998, “Measurements of Flame Speeds in Combustible Vortex Rings: Validity of the Back-Pressure Drive Flame Propagation Mechanism,” 27th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 727–734.
Ashurst,  W. M. T., 1996, “Flame Propagation Along a Vortex: The Baroclinic Push,” Combust. Sci. Technol., 112, pp. 175–185.
Abdel-Gayed, R. G., Bradley, D., Hamid, M. N., and Lawes, M., 1984, “Lewis Number Effects on Turbulent Burning Velocity,” 20th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 505–512.
Abdel-Gayed,  R. G., and Bradley,  D., 1985, “Criteria for Turbulent Propagation Limits of Premixed Flames,” Combust. Flame, 62, pp. 61–68.
Abdel-Gayed,  R. G., Bradley,  D., and Lung,  F. K. K., 1989, “Combustion Regimes and the Straining of Turbulent Premixed Flames, Short Communications,” Combust. Flame, 76, pp. 213–218.
Bradley, D., 1992, “How Fast Can We Burn?” 24th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 247–262.
Putnam, A. A., and Jensen, R. A., 1948, “Application of Dimensionless Numbers to Flash-Back and Other Combustion Phenomena,” 3rd International Symposium on Combustion, Flame and Explosion Phenomena, The Combustion Institute, Pittsburgh, PA, pp. 89–98.
Kremer, H., Minx, E., and Rawe, R., 1976, “Flammenstabilität bei Gasbrennern mit Gebläse,” Forschungsbericht des Landes Nordrhein-Westfalen, Nr. 2567/Fachgruppe Energie.
Prade, B., and Lenze, B., 1992, “Experimental Investigation in Extinction of Turbulent Non-Premixed Disk Stabilized Flames,” 24th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 369–375.
Turns, S. R., 2000, An Introduction to Combustion. 2nd Ed., Gordon and Breach, New York.
Chomiak, J., 1990, Combustion—A Study in Theory, Fact and Application.
Hoffmann, S., 1994, “Untersuchungen des Stabilisierungsverhaltens und der Stabilitätsgrenzen von Drallflammen mit innerer Rückströmzone,” Ph.D. thesis, TH Karlsruhe.
Hillemanns, R., 1988, “Das Strömungs- und Reaktionsfeld sowie Stabilisierungseigenschaften von Drallflammen unter dem Einfluss der inneren Rezirkulationszone,” Ph.D. thesis, TH Karlsruhe.
Hoffmann,  S., Habisreuther,  P., and Lenze,  B., 1994, “Development and Assessment of Correlations for Predicting Stability Limits of Swirling Flames,” Chem. Process Eng. (London), 33, pp. 393–400.
Hoffmann,  S., Lenze,  B., and Eickhoff,  H., 1998, “Results of Experiments and Models for Predicting Stability Limits of Turbulent Swirling Flames,” ASME J. Eng. Gas Turbines Power, 120, pp. 311–316.
Lewis, B., and von Elbe, G., 1987, Combustion Flames and Explosion of Gases, Third Ed.
Nastoll, W., 1989, “Untersuchung zur instationären turbulenten Flammenausbreitung in geschlossenen Behältern,” Ph.D. thesis, TH Karlsruhe.
Scholte,  T. G., and Vaags,  P. B., 1959, “Burning Velocities of Mixtures of Hydrogen, Carbon Monoxide and Methane With Air,” Combust. Flame, 3, pp. 511–524.
Yu,  G., Law,  C. K., and Wu,  C. K., 1986, “Laminar Flame Speeds of Hydrocarbon+Air Mixtures With Hydrogen Addition,” Combust. Flame, 63, pp. 339–347.
Koroll,  G. W., Kumar,  R. K., and Bowles,  E. M., 1993, “Burning Velocities of Hydrogen-Air Mixtures,” Combust. Flame, 94, pp. 330–340.
Peters, N., 1994, “Turbulente Brenngeschwindigkeit,” Abschlussbericht zum Forschungsvorhaben Pe 241/9-2.
Berman, M., 1984, Sandia Laboratories Report, SAND84-0689.
Dowdy,  D. R., Smith,  D. B., Taylor,  S. C., and Williams,  A., 1990, “The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures,” Combust. Flame, pp. 325–332.
Liu, Y., 1991, “Untersuchung zur Stationären Ausbreitung turbulenter Vormischflammen,” Ph.D. thesis, TH Karlsruhe.
Kee, R. J., Grcar, J. F., Smooke, M. D., Miller, J. A., and Meeks, E., 1992, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flame,” Sandia National Laboratories Report SAND85-8240.
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Jr., Lissianski, V. V., and Qin, Z., GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/.
Moser, V., 1997, “Simulation der Explosion Magerer Wasserstoff-Luft-Gemische in Großskaligen Geometrien,” Ph.D. thesis, RWTH Aachen.

Figures

Grahic Jump Location
Schematic sketch of a stable flame (a) and a flashback due to combustion induced vortex breakdown (b)
Grahic Jump Location
Dimensionless axial (ū/ūa) and circumferential (w̄/ūa) velocity profiles in the mixing tube
Grahic Jump Location
Correlations, measurements, and computations of the laminar flame speed of H2-air-flames at ambient temperature, p=1 bar
Grahic Jump Location
Laminar flame speeds of CH4-air-flames at various initial temperatures (mixture 1, 1 bar)
Grahic Jump Location
Laminar flame speeds of CH4–H2-mixtures in air (mixture 2, yH2,Fuel=0.05,p=1 bar)
Grahic Jump Location
Laminar flame speeds of CH4–H2-mixtures in air (mixture 3, YH2,Fuel=0.10,p=1 bar)
Grahic Jump Location
Laminar flame speeds of CH4–H2-mixtures in air (mixture 4, YH2,Fuel=0.15,p=1 bar)
Grahic Jump Location
Air excess ratio λ at the flashback limit (mixture 1, YH2,Fuel=0)
Grahic Jump Location
Air excess ratio λ at the flashback limit (mixture 2, YH2,fuel=0.05)
Grahic Jump Location
Air excess ratio λ at the flashback limit (mixture 3, YH2,Fuel=0.10)
Grahic Jump Location
Air excess ratio λ at the flashback limit (mixture 4, YH2,Fuel=0.15)
Grahic Jump Location
Density ratio versus premixing temperature at the flashback limit, different mean velocities (mixture 1)
Grahic Jump Location
Density ratio versus premixing temperature at the flashback limit, different mean velocities (mixture 2)
Grahic Jump Location
Density ratio versus premixing temperature at the flashback limit, different mean velocities (mixture 3)
Grahic Jump Location
Density ratio versus premixing temperature at the flashback limit, different mean velocities (mixture 4)
Grahic Jump Location
Quenching constant Cquench at the flashback limit (mixture 1)
Grahic Jump Location
Correlation of flame quenching at the flashback limits based on Peclet numbers (mixture 1)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In