0
TECHNICAL PAPERS: Gas Turbines: Heat Transfer

The Two-Flux Model Applied to Radiative Transfer and Forced Convection in the Laminar Boundary Layer on a Flat Plate

[+] Author and Article Information
F. Malpica

Departamento de Termodinámica y, Fenómenos de Transferencia, Universidad Simón Bolivar, Caracas AP 89000, Venezuela

N. Moreno, A. Tremante

Departamento de Conversión y Transporte de Energia, Universidad Simón Bolivar, Caracas AP 89000, Venezuela

J. Eng. Gas Turbines Power 125(3), 734-741 (Aug 15, 2003) (8 pages) doi:10.1115/1.1496775 History: Received August 01, 2000; Revised April 01, 2001; Online August 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Viskanta,  R., and Grosh,  R. J., 1962, “Boundary Layer in Thermal Radiation and Emitting Media,” Int. J. Heat Mass Transf., 5, p. 765.
Rosseland, S., 1936, Theoretical Astrophysics, Oxford University Press, London.
Cess,  R. D., 1964, “Radiation Effects upon Boundary Layer Flow of an Absorbing Gas,” ASME J. Heat Transfer, 86C, pp. 469–475.
Oliver,  C. C., and McFadden,  P. W., 1966, “The Interaction of Radiation and Convection in the Laminar Boundary Layer,” ASME J. Heat Transfer, 88C, pp. 205–213.
Lee,  H. S., Menart,  J. A., and Fakery,  A., 1990, “Multilayer Radiation Solution for Boundary Layer Flow of Gray Gases,” J. Thermophys. Heat Transfer, 4, p. 180.
Sidall, R., 1972, “Flux Methods for the Analysis of Radiant Heat Transfer,” Proceedings of the Fourth Symposium on Flames and Industry, The Institute of Fuel, Paper No. 16, pp. 169–170.
Tremante,  A., and Malpica,  F., 1994, “Contribution of Thermal Radiation to the Temperature Profile of Ceramics Composite Materials,” ASME J. Eng. Gas Turbines Power, 116, pp. 583–586.
Siegel, R., and Howell, J. R., 1981, Thermal Radiation Heat Transfer, 2nd Ed, Hemisphere, Washington DC, p. 501.
Pereira, V., 1982, “PASVA3: An Adaptive Finite Differences Fortran Program for First Order Nonlinear Ordinary Differential Equation Problems,” Codes for Boundary Problems in Ordinary Differential Equations, (Lecture Notes in Computer Science 76), B. Childs, M. Scott, J. Daniel, E. Denman, and P. Nelson, eds., Springer-Verlag, New York, pp. 67–68.
Özisik, K. M., 1973, Radiative Transfer and Interaction With Conduction and Convection, John Wiley and Sons, New York, pp. 521–522.
Eckert, E. R. G., and Drake, R. M., 1972, Analysis of Heat and Mass Transfer, McGraw-Hill Kogakusha LTD, Tokyo, p. 308.
Malpica,  F., Campo,  A., and Tremante,  A., 1986, “Contribution of Thermal Radiation to the Temperature Profile of Semitransparent Materials,” High Temp.-High Press., 18, pp. 35–41.
Siegel,  R., and Spuckler,  C. M., 1994, “Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers,” Int. J. Heat Mass Transf., 17, pp. 403–413.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington DC, pp. 83–84.

Figures

Grahic Jump Location
Geometry of the physical model and the coordinate system
Grahic Jump Location
Temperature profiles over flat-plate forced convection comparison with optically thin approximation. A=3,θ=0.5,Wo=0.0,Pr=1.0,N=0.1,εw=1.0.
Grahic Jump Location
Temperature profiles over flat-plate forced convection, two-flux method (A=3) compared with thick limit. θ=0.5,Wo=0.0,Pr=1.0,N=0.1,εw=1.0.
Grahic Jump Location
Temperature profiles over flat-plate forced convection. Effect of scattering, Wo=0.5,Pr=1.0,N=0.1,εw=1.0,A=3.
Grahic Jump Location
(a) Temperature gradients across the boundary layer. Effect of ξ. Pr=1.0,εw=1.0,θ=0.5,E=0.0,Wo=0.0,A=3. (b) Temperature gradients across the boundary layer. Effect of parameter ξ. Pr=1.0,εw=1.0,θ=0.5,E=0.0,Wo=0.0,A=3. (c) Temperature gradients across the boundary layer. Effect of ξ. Pr=1.0,εw=1.0,θ=0.5,E=0.0,Wo=0.0,A=3.
Grahic Jump Location
(a) Effect of parameter ξ on radiative heat flux across the boundary layer. Pr=1.0,εw=1.0,θ=0.5,E=0.0,Wo=0.0,A=3. (b) Effect of parameter ξ on radiative heat flux across the boundary layer. Pr=1.0,εw=1.0,θ=0.5,E=0.0,Wo=0.0,A=3. (c) Effect of parameter ξ on radiative heat flux across the boundary layer. Pr=1.0,εw=1.0,θ=0.5,E=0.0,Wo=0.0,A=3.
Grahic Jump Location
Total heat flux coefficient (convection+radiation)Pr=1.0,εw=1.0,E=0.0,Wo=0.0,A=3

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In