0
TECHNICAL PAPERS: Internal Combustion Engines

Numerical Study of Nonreacting Gas Turbine Combustor Swirl Flow Using Reynolds Stress Model

[+] Author and Article Information
S. L. Yang, Y. K. Siow, B. D. Peschke

Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931  

R. R. Tacina

Combustion Technology Branch, NASA John H. Glenn Research Center, Lewis Field, 21000 Brookpark Road, Cleveland, OH 44135

J. Eng. Gas Turbines Power 125(3), 804-811 (Aug 15, 2003) (8 pages) doi:10.1115/1.1560706 History: Received February 01, 2002; Revised March 01, 2002; Online August 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Koff,  B. L., 1994, “Aircraft Gas Turbine Emissions Challenge,” ASME J. Eng. Gas Turbines Power, 116, pp. 474–477.
Talpallikar,  M. V., Smith,  C. E., Lai,  M. C., and Holdeman,  J. D., 1992, “CFD Analysis of Jet Mixing in Low NOx Flametube Combustors,” ASME J. Eng. Gas Turbines Power, 114, pp. 416–424.
Cline,  M. C., Micklow,  G. J., Yang,  S. L., and Nguyen,  H. L., 1995, “Numerical Analysis of the Flow-Fields in a Staged Gas Turbine Combustor,” J. Propul. Power, 111(5), pp. 894–898.
Yang,  S. L., Chen,  R., Cline,  M. C., and Nguyen,  H. L., 1992, “Numerical Simulation of a Low-Emission Gas Turbine Combustor Using KIVA-II,” Int. J. Numer. Methods Fluids, 15, pp. 865–881.
Micklow,  G. J., Roychoudhury,  S., Nguyen,  H. L., and Cline,  M. C., 1993, “Emissions Reduction by Varying the Swirler Air Flow Split in Advanced Gas Turbine Combustors,” ASME J. Eng. Gas Turbines Power, 115, pp. 563–569.
Kumakura,  M. H., Sasaki,  M., and Suzuki,  D., 1993, “Low NOx Combustor for Automotive Ceramic Gas Turbine-Reliability Assurance,” ASME J. Eng. Gas Turbines Power, 115, pp. 547–553.
Cowell,  L. H., and Smith,  K. O., 1993, “Development of a Liquid-Fueled, Lean-Premixed Gas Turbine Combustor,” ASME J. Eng. Gas Turbines Power, 115, pp. 554–562.
Leonard,  G., and Stegmaier,  J., 1994, “Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion System,” ASME J. Eng. Gas Turbines Power, 116, pp. 542–546.
Tacina, R. R., 1990, “Low NOx Potential of Gas Turbine Engines,” AIAA Paper No. 90-0550.
Gran,  I. R., Ertesvag,  I. S., Magnussen,  B. F., 1997, “Influence of Turbulence Modeling of Predictions of Turbulent Combustion,” AIAA J., 35(1), pp. 106–110.
McGuirk,  J. J., and Palma,  J. M. L. M., 1993, “The Flow Inside a Model Gas Turbine Combustor: Calculations,” ASME J. Eng. Gas Turbines Power, 115, pp. 594–602.
Rizk,  N. K., and Mongia,  H. C., 1993, “Three-Dimensional Gas Turbine Combustor Emissions Modeling,” ASME J. Eng. Gas Turbines Power, 115, pp. 603–611.
Relation,  H. L., Battaglioli,  J. L., and Ng,  W. F., 1998, “Numerical Simulations of Nonreacting Flows for Industrial Gas Turbine Combustor Geometries,” ASME J. Eng. Gas Turbines Power, 120, pp. 460–467.
Sloan,  D. G., Smith,  P. J., and Smooth,  L. D., 1986, “Modeling of Swirl in Turbulent Flow Systems,” Prog. Energy Combust. Sci., 12, pp. 103–250.
Tsao,  J. M., and Lin,  C. A., 1999, “Reynolds Stress Modeling of Jet and Swirl Interaction Inside a Gas Turbine Combustor,” Int. J. Numer. Methods Fluids, 29(4), pp. 451–464.
Lin,  C. A., and Lu,  C. M., 1994, “Modeling Three-Dimensional Gas-Turbine Combustor Model Flow using a Second Moment Closure,” AIAA J., 32(7), pp. 1416–1422.
Gibson,  M. M., and Launder,  B. E., 1978, “Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layers,” J. Fluid Mech., 86, pp. 491–551.
Yang,  S. L., Peschke,  B. D., and Hanjalic,  K., 2000, “Second-Moment Closure Model for IC Engine Flow Simulation Using KIVA Code,” ASME J. Eng. Gas Turbines Power, 122(2), pp. 355–365.
Speziale,  C. G., Sarkar,  S., and Gatski,  T. B., 1991, “Modeling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,” J. Fluid Mech., 227, pp. 245–272.
Amsden, A. A., 1997, “KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves,” Los Alamos National Laboratory, LA-13313-MS, Los Alamos, NM.
Im, K.-S., Lai, M.-C., and Tacina, R., 1998, “A Parametric Spray Study of the Swirler/Venturi Injectors,” AIAA Paper No. 98-3269.
Bachalo,  W. D., and Houser,  M. J., 1984, “Phase/Doppler Spray Analyzer for Simultaneous Measurements of Drop Size and Velocity Distributions,” Opt. Eng., 23(5), pp. 583–590.
Bulzan,  D. L., 1995, “Structure of a Swirl-Stabilized Combusting Spray,” J. Propul. Power, 11(6), pp. 1093–1102.
Gupta, A. K., Lilley, D. G., and Syred, N., 1984, Swirl Flows, Abacus Press, Tunbridge Wells, England, Chap. 4.
Yang, S. L., Siow, Y. K., Teo, C. Y., Tacina, R. R., Iannetti, A. C., and Penko, P. F., 2003, “Numerical Study of LDI Combustor With Discrete-Jet Swirlers Using Reynolds Stress Model,” ASME J. Eng. Gas Turbines Power, submitted for publication.
Teo, C. Y., Siow, Y. K., and Yang, S. L., 2001, “Flowfield Study of LDI Combustor With Discrete-Jet Swirler Using Re-Stress Model,” AIAA Paper No. 2001-3424.
Jeng, S.-M., Cai, J., and Tacina, R. R., 2001, “Multi-Swirler Aerodynamics: Experimental Measurements,” AIAA Paper No. 2001-3574.
Iannetti, A., Tacina, R. R., Cai, J., and Jeng, S.-M., 2001, “Multi-Swirler Aerodynamics: CFD Predictions,” AIAA Paper No. 2001-3575.

Figures

Grahic Jump Location
Results for 60 deg swirler at z=11 mm cutting plane: (a) Reynolds stress turbulence model, (b) k-ε, (c) experiment
Grahic Jump Location
Results for 60 deg swirler at z=18 mm cutting plane: (a) Reynolds stress turbulence model, (b) k-ε, (c) experiment
Grahic Jump Location
Results for 60 deg swirler at z=5 mm cutting plane: (a) Reynolds stress turbulence model, (b) k-ε, (c) experiment
Grahic Jump Location
A sketch of the swirler
Grahic Jump Location
Combustor mesh and cutting planes
Grahic Jump Location
Results for 60 deg clockwise and counterclockwise swirler at z=11 mm plane: (a) Reynolds stress turbulence model, (b) k-ε
Grahic Jump Location
RSTM velocity on y0-y0 plane for 60 deg cw+ccw swirler: (a) Reynolds stress turbulence model, (b) k-ε
Grahic Jump Location
Velocity on y0-y0 plane for 60 deg swirler: (a) Reynolds stress turbulence model, (b) k-ε
Grahic Jump Location
Velocity on y1-y1 plane for 60 deg swirler: (a) Reynolds stress turbulence model, (b) k-ε
Grahic Jump Location
Results for 45 deg swirler at z=11 mm plane: (a) Reynolds stress turbulence model, (b) k-ε
Grahic Jump Location
RSTM velocity on y0-y0 plane for 45 deg swirler: (a) Reynolds stress turbulence model, (b) k-ε

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In