0
TECHNICAL PAPERS: Gas Turbines: Combustion and Fuel

Forced Low-Frequency Spray Characteristics of a Generic Airblast Swirl Diffusion Burner

[+] Author and Article Information
J. Eckstein, E. Freitag, C. Hirsch, T. Sattelmayer

Lehrstuhl fur Thermodynamik, Technische Universitat Munchen, 85747 Garching, Germany

R. von der Bank, T. Schilling

Rolls-Royce Deutschland Ltd. & Co. KG, Combustor Aerodynamics, Eschenweg 11, 15827 Dahlewitz, Berlin, Germany

J. Eng. Gas Turbines Power 127(2), 301-306 (Apr 15, 2005) (6 pages) doi:10.1115/1.1789515 History: Received October 01, 2002; Revised March 01, 2003; Online April 15, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Paschereit, C. O., Polifke, W., Schuermanns, B., and Mattson, O., 1998, “Investigation of the Thermoacoustic Characteristics of a Lean Premixed Gas Turbine Burner,” ASME Paper 98-GT-582.
Sattelmayer, T., 2000, “Influence of the Combustor Aerodynamics on Combustion Instabilitites From Equivalence Ratio Fluctuations,” ASME Paper 2000-GT-0082.
Polifke,  W., Paschereit,  C. O., and Döbbeling,  K., 2001, “Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit,” Int. J. of Acoustics and Vibration,6(3), pp. 135–146.
Cohen, J. M., Hibshman, J. R., Proscia, W., Rosfjord, T. J., Wake, B. E., McVey, J. B., Lovett, J., Ondas, M., DeLaat, J., and Breisacher, K., 2000, “Experimental Replication of an Aeroengine Combustion Instability,” ASME Paper 2000-GT-0093.
Zhu, M., Dowling, A. P., and Bray, K. N. C., 1999, “Combustion Oscillations in Burners With Fuel Spray Atomizers,” ASME Paper 99-GT-302.
Zhu, M., Dowling, A. P., and Bray, K. N. C., 2000, “Self-Excited Oscillations in Combustors With Spray Atomizers,” ASME Paper 2000-GT-0108.
Lefebvre, A. H., 1983, Gas Turbine Combustion, First ed., Hemisphere, New York.
Hinze, J. O., 1979, Turbulence, Second ed., McGraw-Hill, New York.
Krämer, M., 1988, “Untersuchungen zum Bewegungsverhalten von Tropfen in turbulenter Strömung im Hinblick auf Verbrennungsvorgänge,” Ph.D. thesis, TH Karlsruhe.
Turns, S., 2000, An Introduction to Combustion, Second ed., McGraw-Hill, New York.
Kneer, R., 1993, “Grundlegende Untersuchungen zur Sprühstrahlausbreitung in hochbelasteten Brennräumen,” Ph.D. thesis, TH Karlsruhe.
Sattelmayer, T., 1985, “Zum Einfluss der ausgebildeten, turbulenten Luft-Flüssigkeitsfilm-Strömung auf den Filmzerfall und die Tropfenbildung am Austritt von Spalten geringer Höhe,” Ph.D. thesis, TH Karlsruhe.
Wittig, S., Aigner, M., Sakbani, K., and Sattelmayer, T., 1984, “Optical Measurements of Droplet Size Distributions: Special Considerations in the Parameter Definition for Fuel Atomizers,” AGARD-CP-353, Paper 13.

Figures

Grahic Jump Location
(Color online) Schematic representation of the test rig
Grahic Jump Location
(Color online) Schematic representation of the position of the PIV-investigation area (light gray) and the Malvern laser beam (dark gray) in the vertical center plane of the combustion chamber relative to the injector outlet
Grahic Jump Location
(Color online) Comparison of measured pressure amplitudes (symbols) and velocities (lines) over frequency for three mass flow rates in a noncombusting environment
Grahic Jump Location
Phase-locked velocity field at 90 Hz without combustion: the left half shows two contour levels of velocity magnitude for all ten phase angles, the right half shows the same field scaled with the average velocity at the burner exit
Grahic Jump Location
(Color online) SMD over relative AMF for different preheating temperatures in the stationary, noncombusting case
Grahic Jump Location
(Color online) Comparison of unsteady SMD (symbols) data with the steady atomization curve at 1.0-g/s fuel mass flow rate
Grahic Jump Location
(Color online) Comparison of unsteady SMD (symbols) data with the steady atomization curve at 1.8-g/s fuel mass flow rate
Grahic Jump Location
Mie scattering images of the spray cone with combustion at ṁ/ṁ0=1.6, fuel flow rate of 1.3 g/s, Tair=430 K, and f=130 Hz. The contours show constant levels of scattered intensity. Left half: minimum velocity phase; right half: maximum velocity phase. Crown lines show constant spray geometry.
Grahic Jump Location
(Color online) Air velocity and Mie scattering intensity fluctuation for the spray at 130-Hz excitation

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In