0
TECHNICAL PAPERS: Power Engineering

Natural Gas Decarbonization Technologies for Advanced Power Plants

[+] Author and Article Information
Marco Gambini

Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico no. 1, 00133 Rome, Italygambini@ing.uniroma2.it

Michela Vellini

Department of Industrial Engineering, University of Rome “Tor Vergata,” Via del Politecnico no. 1, 00133 Rome, Italyvellini@ing.uniroma2.it

J. Eng. Gas Turbines Power 129(4), 1114-1124 (Jan 24, 2007) (11 pages) doi:10.1115/1.2719266 History: Received October 13, 2006; Revised January 24, 2007

In this paper two options for H2 production, by means of natural gas, are presented and their performances are evaluated when they are integrated with advanced H2/air cycles. In this investigation two different schemes have been analyzed: an advanced combined cycle power plant (CC) and a new advanced mixed cycle power plant (AMC). The two methods for producing H2 are as follows: (1) steam methane reforming: it is the simplest and potentially the most economic method for producing hydrogen in the foreseeable future; and (2) partial oxidation of methane: it could offer an energy advantage because this method reduces the energy requirement of the reforming process. These hydrogen production plants require material and energetic integrations with power section and the best interconnections must be investigated in order to obtain good overall performance. With reference to thermodynamic and economic performance, significant comparisons have been made between the above introduced reference plants. An efficiency decrease and an increase in the cost of electricity has been obtained when power plants are equipped with a natural gas decarbonization section. The main results of the performed investigation are quite variable among the different H2 production technologies here considered: the efficiency decreases in a range of 5.5 percentage points to nearly 10 for the partial oxidation of the natural gas and in a range of about 9 percentage points to over 12 for the steam methane reforming. The electricity production cost increases in a range of about 41–42% for the first option and in a range of about 34–38% for the second one. The AMC, coupled with partial oxidation, stands out among the other power plant solutions here analyzed because it exhibits the highest net efficiency and the lowest final specific CO2 emission. In addition to this, economic impact is favorable when AMC is equipped with systems for H2 production based on partial oxidation of natural gas.

Copyright © 2007 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Figure 13

The overall efficiency

Grahic Jump Location
Figure 14

The CO2 specific emission rate

Grahic Jump Location
Figure 15

Electricity production costs

Grahic Jump Location
Figure 16

The electricity production cost increase

Grahic Jump Location
Figure 3

Steam methane reforming process

Grahic Jump Location
Figure 4

Separation process of CO2 by chemical absorption

Grahic Jump Location
Figure 5

CO2 liquefaction process

Grahic Jump Location
Figure 6

Methane partial oxidation process

Grahic Jump Location
Figure 7

CC power plant integrated with H2 production plant (steam methane reforming)

Grahic Jump Location
Figure 8

AMC power plant integrated with H2 production plant (steam methane reforming)

Grahic Jump Location
Figure 9

Heat exchanger network (CC)

Grahic Jump Location
Figure 10

Heat exchanger network (AMC)

Grahic Jump Location
Figure 11

Heat and mass balances (CC)

Grahic Jump Location
Figure 12

Heat and mass balances (AMC)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In