Novik, A. S., Miles, G. A., and Lilley, D. G., 1979, “Numerical Simulation of Combustor Flow and Fields: A Primitive Variable Design Capability,” J. Energy, 3 , pp. 95–105.

[CrossRef]Davoudzadeh, F., and Liu, N. S., 2004, “Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor,” ASME Paper No. 53496.

Jyothishkumar, V., and Ganesan, V., 2005, “Modeling of Marine Gas Turbine Combustor Under Non-Reacting and Reacting Conditions,” Soc. Nav. Archit. Mar. Eng., Trans., 1 , pp. 21–32.

Cui, Y., Xu, G., Yu, B., Nie, C., and Huang, W., 2006, “The Effects of Pressure on Gas Turbine Combustor Performance: An Investigation via Numerical Simulation,” ASME Paper No. GT2006-90635.

Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., and Darabiha, N., 2003, “Modeling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM,” Combust. Theory Modell., 7 (3), pp. 449–470.

Van Oijen, J. A., and De Goey, L. P. H., 2000, “Modeling of Premixed Laminar Flames Using Flamelet-Generated Manifolds,” Combust. Sci. Technol., 161 , pp. 113–137.

[CrossRef]Maltsev, A., Sadiki, A., and Janicka, J., 2004, “A New BML-Based RANS Modeling for the Description of Gas Turbine Typical Combustion Processes,” Prog. Comput. Fluid Dyn., 4 , pp. 229–236.

[CrossRef]Schneider, E., Maltsev, A., Sadiki, A., and Janicka, J., 2008, “Study on the Potential of BML-Approach and G-Equation Concept-Based Models for Predicting Swirling Partially Premixed Combustion Systems: URANS Computations,” Combust. Flame, 152 , pp. 548–572.

[CrossRef]Oberlack, M., Wenzel, H., and Peters, N., 2001, “On Symmetries and Averaging of the G-Equation for Premixed Combustion,” Combust. Theory Modell., 5 (3), pp. 363–383.

[CrossRef]Caracciolo, L., and Rubini, P. A., 2006, “Validation of Partially-Premixed Combustion Model for Gas Turbine Applications,” ASME Paper No. GT2006-90956.

Zhang, Y., and Rawat, R., 2009, “Simulation of Turbulent Lifted Flames Using a Partially Premixed Coherent Flame Model,” ASME J. Eng. Gas Turbines Power, 131 , p. 031505.

[CrossRef]Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K. U., Krebs, W., Prade, B., Kaufmann, P., and Veynante, D., 2004, “Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes,” Combust. Flame, 137 , pp. 489–505.

[CrossRef]Hsiao, G., and Mongia, H. C., 2003, “Swirl Cup Modeling, Part 3: Grid Independent Solution With Different Turbulence Models,” AIAA Paper No. 2003-1349.

Wang, S., Yang, V., Hsiao, G., Hsieh, S., and Mongia, H. C., 2007, “Large Eddy Simulations of Gas-Turbine Swirl Injector Flow Dynamics,” J. Fluid Mech., 583 , pp. 99–122.

[CrossRef]Fuller, D. S., and Smith, C. E., 1993, “Integrated CFD Modeling of Gas Turbine Combustors,” AIAA Paper No. 93-2196.

Crocker, D. S., Nickolaus, D., and Smith, C. E., 1999, “CFD Modeling of Gas Turbine Combustor From Compressor Exit to Turbine Inlet,” ASME J. Eng. Gas Turbines Power, 121 , pp. 89–95.

[CrossRef]STAR-CCM+ User Guide Ver. 4.02.

Mongia, H. C., 2008, “Recent Progress in Comprehensive Modeling of Gas Turbine Combustion,” AIAA Paper No. 2008-1445.

Menzies, K. R., 2005, “An Evaluation of Turbulent Models for the Isothermal Flow in a Gas Turbine Combustion System,” "*Proceedings of the Sixth International Symposium on Engineering Turbulence Modeling and Experiments*", Sardinia, Italy.

Nikjoo, H., and Mongia, H. C., 1999, “Predictions of Flows With Adverse Pressure Gradients,” AIAA Paper No. 99-2817.

Karim, V. M., Bart, M., and Erik, D., 2003, “Comparative Study of k-ε Turbulence Models in Inert and Reacting Swirling Flows,” AIAA Paper No. 2003-3744.

Benelli, G., Brunetti, J., Carrai, L., and Sigali, S., 2007, “RANS Simulation of a Gas Turbine Combustor: A Study on Aerodynamics, Mixing and Heat Transfer in Combustive Conditions,” "*Proceedings of the European Combustion Meeting 2007*".

Joung, D., and Huh, K. Y., 2009, “Numerical Simulation of Non-Reacting and Reacting Flows in a 5 MW Commercial Gas Turbine Combustor,” ASME Paper No. GT 2009-59987.

Wolfshtein, M., 1969, “The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient,” Int. J. Heat Mass Transfer, 12 , pp. 301–318.

[CrossRef]Westbrook, C. K., and Dryer, F. L., 1981, “Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames,” Combust. Sci. Technol., 27 (1), pp. 31–43.

[CrossRef]Peters, N., 2006, “Concept and Key Parameters in Turbulent Combustion Modeling,” "*Proceedings of the Fifth International Symposium on Turbulence Heat and Mass Transfer*", Dubrovnik, Croatia, Sept. 25–29.

Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Lissianski, V. V., and Qin, Z.,

http://www.me.berkeley.edu.gri_mech/Jones, W. P., 1980, “Prediction Methods for Turbulent Flames,” "*Prediction Methods for Turbulent Flow*", Hemisphere, New York, pp. 1–45.

Kobayashi, H., Seyama, K., Hagiwara, H., and Ogami, Y., 2005, “Burning Velocity Correlation of Methane/Air Turbulent Premixed Flames at High Pressure and High Temperature,” Proc. Combust. Inst., 30 , pp. 827–834.

[CrossRef]Gulder, O. L., 1990, “Turbulence Premixed Flame Propagation Models for Different Combustion Regimes,” "*Proceedings of the 23rd International Symposium on Combustion*", The Combustion Institute, pp. 743–750.