Choi, Y., and Chen, J.-Y., 2005, “Fast Prediction of Start-of-Combustion in HCCI With Combined Artificial Neural Networks and Ignition Delay Model,” Proc. Combust. Inst., 30 , pp. 2711–2718.
Kee, R. J., Rupley, F. M., and Miller, J. A., 1992, “Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics,” Sandia National Laboratories, Report No. SAND89–8009B.
KIVA3V, 1997, “A Block-Structured KIVA Program for Engines With Vertical or Canted Valves,” Los Alamos Laboratory, Report No. LA-13313-MS.
Curran, H. J., Gaffuri, P., Pitz, W. J., and Westbrook, C. K., 2002, “A Comprehensive Modeling Study of Iso-Octane Oxidation,” Combust. Flame
[CrossRef], 129 , pp. 253–280.
Westbrook, C. K., 2000, “Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems,” Proc. Combust. Inst., 28 , pp. 1563–1577.
Roberts, C. E., Matthews, R. D., and Leppard, W. R., 1996, “Development of a Semi-Detailed Kinetics Mechanism for the Autoignition of Iso-Octane,” SAE Paper No. 962107.
Soyhan, H., Amnéus, P., Mauss, F., and Sorusbay, C., 1999, “A Skeletal Mechanism for the Oxidation of Iso-Octane an n-Heptane Validated Under Engine Knock Conditions,” Transactions, Journal of Fuels and Lubricants, 108 , pp. 1402–1409.
Soyhan, H. S., Amnéus, P., Løvås, T., Nilsson, D., Maigaard, P., Mauss, F., and Sorusbay, C., 2000, “Automatic Reduction of Detailed Chemical Reaction Mechanisms for Autoignition Under Engine Knock Conditions,” Transactions, Journal of Fuels and Lubricants, 109 , pp. 1435–1444.
Aceves, S. M., Martinez-Frias, J., Flower, D., Smith, J. R., Dibble, R. W., and Chen, J.-Y., 2002, “A Computer Generated Reduced Iso-Octane Chemical Kinetic Mechanism Applied to Simulation of HCCI Combustion,” SAE Paper No. 2002–01–2870.
Maigaard, P., Mauss, F., and Kraft, M., 2003, “Homogeneous Charge Compression Ignition Engine: A Simulation Study on the Effects of Inhomogeneities,” ASME J. Eng. Gas Turbines Power
[CrossRef], 125 , pp. 466–471.
Chen, J.-Y., 2001, “Automatic Generation of Reduced Mechanisms and Their Applications to Combustion Modeling,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, 33 , pp. 59–67.
Wang, H., and Frenklach, M., 1991, “Direct Reduction of Reaction Mechanisms for Flame Modeling,” Combust. Flame
[CrossRef], 87 , pp. 365–370.
Lu, T., and Law, C. K., 2006, “Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: n-Heptane and Iso-Octane,” Combust. Flame, 144 , pp. 24–36.
Warnatz, J., Maas, U., and Dibble, R. W., 2001, "Combustion", 3rd ed., Springer-Verlag, Berlin, pp. 86–88.
Glassman, I., 1996, "Combustion", 3rd ed., Academic, San Diego, p. 47.
Law, C. K., 2006, "Combustion Physics", Cambridge University Press, New York, pp. 129–131.
Peters, N., "Turbulent Combustion", Cambridge University Press, New York, p. 23.
Chen, J.-Y., 1988, “A General Procedure for Constructing Reduced Reaction Mechanisms With Given Independent Relations,” Combust. Sci. Technol.
[CrossRef], 57 , pp. 89–94.
Turanyi, T., Tomlin, A. S., and Pilling, M. J., 1993, “On the Error of the Quasi-Steady-State Approximation,” J. Phys. Chem.
[CrossRef], 97 , pp. 163–172.
Massias, A., Diamantis, D., Mastorakos, E., and Goussis, D. A., 1999, “An Algorithm for the Construction of Global Mechanisms With CSP Data,” Combust. Flame
[CrossRef], 117 , pp. 685–708.
Lu, T., Ju, Y., and Law, C. K., 2001, “Complex CSP for Chemistry Reduction and Analysis,” Combust. Flame
[CrossRef], 126 , pp. 1445–1455.
Lam, S. H., 1993, “Using CSP to Understand Complex Chemical Kinetics,” Combust. Sci. Technol.
[CrossRef], 89 (5–6), pp. 375–404.
Løvås, T., Amnéus, P., Mauss, F., and Mastorakos, E., 2002, “Comparison of Automatic Reduction Procedures for Ignition Chemistry,” "29th Symposium (International) on Combustion", The Combustion Institute.
Bhattacharjee, B., Schwer, D., Barton, P., and Green, W., 2003, “Optimally-Reduced Kinetic Models: Reaction Elimination in Large-Scale Kinetic Mechanisms,” Combust. Flame
[CrossRef], 135 , pp. 191–208.
Montgomery, C. J., Yang, C., Parkinson, A. R., and Chen, J.-Y., 2006, “Selecting the Optimum Quasi-Steady State Species for Reduced Chemical Kinetic Mechanisms Using a Genetic Algorithm,” Combust. Flame, 144 , pp. 37–52.
Heywood, J. B., 1988, "Internal Combustion Engine Fundamentals", McGraw-Hill, New York, pp. 679–680.