0
Gas Turbines: Microturbines and Small Turbomachinery

Performance Evaluation of the Integration Between a Thermo–Photo–Voltaic Generator and an Organic Rankine Cycle

[+] Author and Article Information
Enrico Barbieri

ENDIF, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italyenrico.barbieri@unife.itDIEM,  Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italyenrico.barbieri@unife.it

Andrea De Pascale

ENDIF, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italyandrea.depascale@unibo.itDIEM,  Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italyandrea.depascale@unibo.it

Claudio Ferrari

ENDIF, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italyclaudio.ferrari@cnr.itDIEM,  Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italyclaudio.ferrari@cnr.it

Francesco Melino1

IMEM, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43100 Parma, Italyfrancesco.melino@imem.cnr.itMechLav,  Università di Ferrara, Via Guercino 47, 44042 Cento (FE), Italyfrancesco.melino@imem.cnr.itDIEM,  Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italyfrancesco.melino@imem.cnr.itENDIF,  Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italyfrancesco.melino@imem.cnr.it

Mirko Morini

IMEM, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43100 Parma, Italymirko.morini@unife.itMechLav,  Università di Ferrara, Via Guercino 47, 44042 Cento (FE), Italymirko.morini@unife.itDIEM,  Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italymirko.morini@unife.itENDIF,  Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italymirko.morini@unife.it

Antonio Peretto

IMEM, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43100 Parma, Italyantonio.peretto@unibo.itMechLav,  Università di Ferrara, Via Guercino 47, 44042 Cento (FE), Italyantonio.peretto@unibo.itDIEM,  Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italyantonio.peretto@unibo.itENDIF,  Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italyantonio.peretto@unibo.it

Michele Pinelli

IMEM, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43100 Parma, Italymichele.pinelli@unife.itMechLav,  Università di Ferrara, Via Guercino 47, 44042 Cento (FE), Italymichele.pinelli@unife.itDIEM,  Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italymichele.pinelli@unife.itENDIF,  Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italymichele.pinelli@unife.it

AM1.5 condition is in reference to a radiation intensity equal to 1 kW/m2 , tilted surface at 37 deg, zenith 48 deg, facing due south, albedo 0.3, turbidity 0.29, and 20 °C of ambient temperature. The solar industry uses AM1.5 for all standardized testing of terrestrial solar panels.

1

Corresponding author.

J. Eng. Gas Turbines Power 134(10), 102301 (Aug 17, 2012) (10 pages) doi:10.1115/1.4007012 History: Received June 15, 2012; Accepted June 20, 2012; Revised June 20, 2012; Published August 17, 2012; Online August 17, 2012

The present study deals with the integration between a thermo-photo-voltaic generator (TPV) and an organic Rankine cycle (ORC), named here TORCIS (thermo-photo-voltaic organic Rankine cycle integrated system). The investigated TORCIS system is suitable for combined heat and power (CHP) applications, such as residential and tertiary sector users. The aim of the research project on this innovative system is the complete definition of the components’ design and the preprototyping characterization of the system, covering all the unresolved issues. This paper shows the results of a preliminary thermodynamic analysis of the system. In more details, TPV is a system to convert, into electric energy, the radiation emitted from an artificial heat source (i.e., combustion of fuel) by the use of photovoltaic cells; in this system, the produced electric power is strictly connected to the thermal one, as their ratio is almost constant and cannot be changed without severe loss in performance. The coupling between TPV and ORC allows us to overcome this limitation and to realize a cogenerative system, which can be regulated with a large degree of freedom, changing the electric-to-thermal power ratio. The paper presents and discusses the TORCIS achievable performance, highlighting its potential in the field of distributed generation and cogenerative systems.

FIGURES IN THIS ARTICLE
<>
Copyright © 2012 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Figure 1

Schematics of a thermo-photo-voltaic generator

Grahic Jump Location
Figure 2

Schematics of an ORC generator

Grahic Jump Location
Figure 9

TORCIS electric versus thermal efficiency: ORC operated with four organic fluids and different electric loads

Grahic Jump Location
Figure 8

TORCIS performance versus ORC-TPV electric power ratio (fluid: toluene)

Grahic Jump Location
Figure 7

ORC efficiency and specific work for the different investigated fluids

Grahic Jump Location
Figure 6

ORC qualitative temperature-entropy-heat diagram showing the organic fluid, the diathermal oil, and the TPV gas profiles in the HX-ORC and thermal storage components

Grahic Jump Location
Figure 5

TORCIS maximum electrical power production configuration

Grahic Jump Location
Figure 4

TORCIS maximum thermal power production configuration

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In