Owen, J. M., and Wilson, M., 2001, “Some Current Research in Rotating-Disc Systems,” Ann. N.Y. Acad. Sci., 934, pp. 206–221.

[CrossRef] [PubMed]Owen, J. M., Pincombe, J. R., and Rogers, R. H., 1985, “Source-Sink Flow Inside a Rotating Cavity,” J. Fluid Mech., 155, pp. 233–265.

[CrossRef]Hide, R., 1968, “On Source-Sink Flows in a Rotating Fluid,” J. Fluid Mech., 32, pp. 737–764.

[CrossRef]Wormley, D. N., 1969, “An Analytical Model for the Incompressible Flow in Short Vortex Chambers,” ASME J. Basic Eng., 91(2), pp. 264–272.

[CrossRef]Chew, J. W., and Snell, R. J., 1988, “Prediction of the Pressure Distribution for Radial Inflow Between Co-Rotating Discs,” ASME GT and Aeroengine Congress, Amsterdam, June 5–9, ASME Paper No. 88-GT-61, p. 9.

Owen, J. M., and Rogers, R. H., 1995, “Flow and Heat Transfer in Rotating-Disc Systems, Volume 2: Rotating Cavities,” *Mechanical Engineering Research Studies* (Engineering Design Series), Research Studies Press, Somerset, UK/John Wiley & Sons Inc., New York.

Shevchuk, I. V., 2009, “Convective Heat and Mass Transfer in Rotating Disk Systems,”

*Lecture Notes in Applied and Computational Mechanics*, Vol. 45, Springer, Heidelberg, Germany.

[CrossRef]Childs, P. R. N., 2010, *Rotating Flows*, Butterworth-Heinemann, London.

Firouzian, M., Owen, J. M., Pincombe, J. R., and Rogers, R. H., 1985, “Flow and Heat Transfer in a Rotating Cavity With a Radial Inflow of Fluid—Part 1: The Flow Structure,” Int. J. Heat Fluid Flow, 6(4), pp. 228–234.

[CrossRef]Firouzian, M., Owen, J. M., Pincombe, J. R., and Rogers, R. H., 1986, “Flow and Heat Transfer in a Rotating Cavity With a Radial Inflow of Fluid—Part 2: Velocity, Pressure and Heat Transfer Measurements,” Int. J. Heat Fluid Flow, 7(1), pp. 21–27.

[CrossRef]Farthing, P. R., Chew, J. W., and Owen, J. M., 1991, “The Use of De-Swirl Nozzles to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow,” ASME J. Turbomach., 113(1), pp. 106–114.

[CrossRef]Chew, J. W., Farthing, P. R., Owen, J. M., and Stratford, B., 1989, “The Use of Fins to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow,” ASME J. Turbomach., 111(3), pp. 349–356.

[CrossRef]Volchkov, E. P., Semenov, S. V., and Terekov, V., 1991, “Heat Transfer and Shear Stress at the End Wall of a Vortex Chamber,” Exp. Therm. Fluid Sci., 4(5), pp. 546–557.

[CrossRef]Farthing, P. R., 1989, “The Effect of Geometry on Flow and Heat Transfer in a Rotating Cavity,” D. Phil. thesis, University of Sussex, Brighton, UK.

Morse, A. P., 1988, “Numerical Prediction of Turbulent Flow in Rotating Cavities,” ASME J. Turbomach., 110, pp. 202–211.

[CrossRef]Young, C., and Snowsill, G. D., 2003, “CFD Optimization of Cooling Air Offtake Passages Within Rotor Cavities,” ASME J. Turbomach., 125(2), pp. 380–386.

[CrossRef]Gosman, A. D., Lockwood, F. C., and Loughhead, J. N., 1976, “Prediction of Recirculating, Swirling Flow in Rotating Disc Systems,” J. Mech. Eng. Sci., 18(3), pp. 142–148.

[CrossRef]Chew, J. W., 1984, “Prediction of Flow in Rotating Disc Systems Using the *k-ε* Turbulence Model,” ASME Gas Turbine Conference, Amsterdam, June 4–7, ASME Paper No. 84-GT-229.

Dacles-Mariani, J., Zilliac, G. G., Chow, J. S., and Bradshaw, P., 1995, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field,” AIAA J., 33(9), pp. 1561–1568.

[CrossRef]Spalart, P. R., and Shur, M., 1997, “On the Sensitization of Turbulence Models to Rotation and Curvature,” Aerosp. Sci. Technol., 1(5), pp. 297–302.

[CrossRef]Spalart, P. R., and Allmaras, S. R., 1994, “A One-Equation Turbulence Model for Aerodynamic Flows,” Rech. Aerosp., 1, pp. 5–21.

Torii, S., and Yang, W. J., 1995, “Numerical Prediction of Fully Developed Turbulent Swirling Flows in an Axially Rotating Pipe by Means of a Modified

*k-ε* Turbulence Model,” Int. J. Numer. Methods Heat Fluid Flow, 5(2), pp. 175–183.

[CrossRef]Smirnov, P. E., and Menter, F. R., 2009, “Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term,” ASME J. Turbomach., 131(4), p. 8.

[CrossRef]Iacovides, H., and Toumpanakis, P., 1993, “Turbulence Modeling of Flows in Axisymmetric Rotor-Stator Systems,” Proceedings of the 5th International Symposium On Refined Flow Modeling Turbulence Measurements, Paris, September 7–10, p. 835.

Elena, L., and Schiestel, R., 1996, “Turbulence Modeling of Rotating Confined Flows,” Int. J. Heat Fluid Flow, 17, pp. 283–289.

[CrossRef]Chen, J. C., and Lin, C. A., 1999, “Computations of Strongly Swirling Flows With Second-Moment Closures,” Int. J. Numer Methods Fluids, 30(5), pp. 493–508.

[CrossRef]Virr, G. P., Chew, J. W., and Coupland, J., 1994, “Application of Computational Fluid Dynamics to Turbine Disc Cavities,” ASME J. Turbomach., 116(4), pp. 701–708.

[CrossRef]Soghe, R. D., Innocenti, L., Andreini, A., and Poncet, S., 2010, “Numerical Benchmark of Turbulence Modeling in Gas Turbine Rotor-Stator System,” Proceedings of the ASME Turbo Expo 2010: Power for Land Sea and Air (GT2010), Glasgow, UK, June 14–18, ASME Paper No. GT2010-22627, pp. 771–783.

[CrossRef]Launder, B. E., and Spalding, D. B., 1974, “The Numerical Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 3(2), pp. 269–289.

[CrossRef]Karman, von. Th., 1924, “Uber Laminare und Turbulente Reibung,” ZAMM, 1(4), pp. 233–252.

Chew, J. W., 1987, “Computation of Flow and Heat Transfer in Rotating Disc Systems,” Proceedings of the 2nd ASME-JSME Thermal Engineering Conference, Honolulu, HI, March 22–27, pp. 361–367.

Chew, J. W., and Rogers, R. H., 1988, “An Integral Method for the Calculation of Turbulent Forced Convection in a Rotating Cavity With Radial Outflow,” Int. J. Heat Fluid Flow, 9(1), pp. 37–48.

[CrossRef]May, N. E., Chew, J. W., and James, P. W., 1994, “Calculation of Turbulent Flow for an Enclosed Rotating Cone,” ASME J. Turbomach., 116(3), pp. 548–554.

[CrossRef]Moinier, P., 1999, “Algorithm Developments for an Unstructured Viscous Flow Solver,” D. Phil. thesis, University of Oxford, Oxford, UK.

FLUENT, 2006, “FLUENT 6.3 Documentation,” ANSYS, Inc., Canonsburg, PA.

Javiya, U., Chew, J. W., Hills, N. J., Zhou, L., Wilson, M., and Lock, G. D., 2011, “CFD Analysis of Flow and Heat Transfer in a Direct Transfer Preswirl System,” ASME J. Turbomach., 134(3), p. 031017.

[CrossRef]Howard, J. H. G., Patankar, S. V., and Bordynuik, R. M., 1980, “Flow Prediction in Rotating Ducts Using Coriolis-Modified Turbulence Models,” ASME J. Fluids Eng., 102, pp. 456–461.

[CrossRef]Shur, M. L., Strelets, M. K., and Travin, A. K., 2000, “Turbulence Modelling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction,” AIAA J., 38(5), pp. 784–792.

[CrossRef]Iaccarino, G., Ooi, A., Reif, B. A. P., and Durbin, P., 1999, “RANS Simulations of Rotating Flows,” Annual Research Briefs, Center for Turbulence Research, Stanford, CA.

Poncet, S., Soghe, R. D., and Facchini, B., 2010, “RANS Modelling of Flow in Rotating Cavity System,” Fifth European Conference on Computational Fluid Dynamics (ECCOMAS CFD), Lisbon, Portugal, June 14–17.