0
Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

Development and Application of a Transported Probability Density Function Method on Unstructured Three-Dimensional Grids for the Prediction of Nitric Oxides

[+] Author and Article Information
Andreas Fiolitakis

e-mail: andreas.fiolitakis@dlr.de

Peter Ess

e-mail: peter.ess@dlr.de
Institute of Combustion Technology,
German Aerospace Center (DLR),
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany

Peter Gerlinger

Institute of Combustion Technology
for Aerospace Engineering,
University of Stuttgart,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
e-mail: peter.gerlinger@dlr.de

Manfred Aigner

Institute of Combustion Technology,
German Aerospace Center (DLR),
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
e-mail: manfred.aigner@dlr.de

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received August 30, 2013; final manuscript received September 3, 2013; published online November 14, 2013. Editor: David Wisler.

J. Eng. Gas Turbines Power 136(3), 031506 (Nov 14, 2013) (10 pages) Paper No: GTP-13-1333; doi: 10.1115/1.4025729 History: Received August 30, 2013; Revised September 03, 2013

The present work explores the capability of the transported probability density function (PDF) method to predict nitric oxide (NO) formation in turbulent combustion. To this end a hybrid finite-volume/Lagrangian Monte Carlo method is implemented into the THETA code of the German Aerospace Center (DLR). In this hybrid approach the transported PDF method governs the evolution of the thermochemical variables, whereas the flow field evolution is computed with a Reynolds-averaged Navier–Stokes (RANS) method. The method is used to compute a turbulent hydrogen-air flame and a methane-air flame and computational results are compared to experimental data. In order to assess the advantages of the transported PDF method, the flame computations are repeated with the “laminar chemistry” approach as well as with an “assumed PDF” method, which are both computationally less expensive. The present study reveals that the transported PDF method provides the highest accuracy in predicting the overall flame structure and nitric oxide formation.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fiolitakis, A., Ess, P. R., Gerlinger, P., and Aigner, M., 2012, “Transported PDF Calculations of a Turbulent, Non-Premixed, Non-Piloted, Hydrogen-Air Flame With Differential Diffusion,” Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Paper No. AIAA 2012-0179.
Ferziger, J. H., and Milovan, P., 2002, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin.
Jones, W., and Launder, B., 1972, “The Prediction of Laminarization With a Two-Equation Model of Turbulence,” Int. J. Heat Mass Transf., 15, pp. 301–314. [CrossRef]
Launder, B., and Sharma, B., 1974, “Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disk,” Lett. Heat Mass Transf., 1, pp. 131–138. [CrossRef]
Bardina, J. E., Huang, P. G., and Coakley, T., 1997, “Turbulence Modeling Validation, Testing, and Development,” NASA Ames Research Center, Moffett Field, CA, Tech. Rep. NASA-TM-110446.
Pope, S. B., 1985, “PDF Methods for Turbulent Reactive Flows,” Prog. Energy Combust. Sci., 11, pp. 119–192. [CrossRef]
Pope, S. B., 1976, “The Probability Approach to the Modelling of Turbulent Reacting Flows,” Combust. Flame, 27, pp. 299–312. [CrossRef]
Janicka, J., Kolbe, W., and Kollman, W., 1979, “Closure of the Transport Equation for the Probability Density Function of Turbulent Scalar Fields,” J. Non-Equilibrium Thermodyn., 4, pp. 47–66. [CrossRef]
Villermaux, J., and Devillon, J., 1972, “Representation de la Coalescence et de la Redispersion des Domaines de Segregation Dans un Fluide par un Modele d’ Interaction Phenomenologique,” Second International Symposium on Chemical Reaction Engineering, Elsevier, New York, pp. 1–13.
Arnold, L., 1973, Stochastische Differentialgleichungen: Theorie und Anwendung, R. Oldenburg Verlag, München.
Möbus, H., 2001, “Euler- und Lagrange-Monte-Carlo-PDF-Simulation Turbulenter Strömungs-, Mischungs- und Verbrennungsvorgänge,” Ph.D. thesis, University of Stuttgart, Suttgart, Germany.
Möbus, H., Gerlinger, P., and Brüggemann, D., 2001, “Comparison of Eularian and Lagrangian Monte Carlo PDF Methods for Turbulent Diffusion Flames,” Combust. Flame, 124, pp. 519–534. [CrossRef]
Wang, H., and Pope, S. B., 2008, “Time-Averaging Strategies in the Finite Volume/Particle Hybrid Algorithm for the Joint PDF Equation of Turbulent Reactive Flows,” Combust. Theory Model., 12, pp. 529–544. [CrossRef]
Haselbacher, A., Najjar, F. M., and Ferry, J., 2007, “An Efficient and Robust Particle-Localization Algorithm for Unstructured Grids,” J. Computat. Phys., 225, pp. 2198–2213. [CrossRef]
Gerlinger, P., Möbus, H., and Brüggemann, D., 2001, “An Implicit Multigrid Method for Turbulent Combustion,” J. Computat. Phys., 167, pp. 247–276. [CrossRef]
Di Domenico, M., 2007, “Numerical Simulations of Soot Formation in Turbulent Flows,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
Gerlinger, P., 2005, Numerische Verbrennungssimulation: Effiziente numerische Simulation turbulenter Verbrennung, Springer-Verlag, Berlin.
Meier, W., Prucker, S., Cao, M.-H., and Stricker, W., 1996, “Characterization of Turbulent H2/N2/Air Jet Diffusion Flames by Single-Puls Spontaneous Raman Scattering,” Combust. Sci. Tech., 118, pp. 293–312. [CrossRef]
Neuber, A., Krieger, G., Tacke, M., Hassel, E., and Janicka, J., 1995, “In Situ Messung der Stickoxidkonzentration in Turbulenten Diffusionsflammen,” 11. TECFLAM-Seminar: Verbrennungsdiagnostik und Prozeß kontrolle, Arbeitsgemeinschaft TECFLAM, pp. 83–99.
Cheng, T.-C., Fruechtel, G., Neuber, A., Lipp, F., Hassel, E. P., and Janicka, J., 1995, “Experimental Data Base for Numerical Simulations of Turbulent Diffusion Flames,” Forschung im Ingenieurwesen Eng. Res., 61, pp. 165–171. [CrossRef]
Peters, N., and Rogg, B., 1993, Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer, Berlin.
San Diego Mechanism, accessed Sep. 25, 2008, http://maeweb.ucsd.edu/combustion/Mechanisms
Fiolitakis, A., Gerlinger, P., Noll, B., Aigner, M., Krebs, W., and Wegner, B., 2010, “A Novel Progress Variable Approach for Predicting NO in Laminar Hydrogen Flames,” Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Paper No. AIAA 2010-608.
Bowman, C. T., Hanson, R. K., Davidson, D. F., Gardiner, W. C., Jr., Lissianski, V., Smith, G. P., Golden, D. M., Frenklach, M., and Goldenberg, M., 1995, Gri 2.11 mechanism, accessed June 6, 2011. http://www.me.berkeley.edu/griech/
Warnatz, J., Maas, U., and Dibble, R., 1997, Verbrennung: Physikalisch-Chemische Grundlagen, Modellierung und Simulation, Experimente, Schadstoffentstehung, Springer, Berlin.
Barlow, R. S., and Frank, J. H., 1998, “Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames,” Proc. Combust. Inst., 27, pp. 1087–1095. [CrossRef]
Barlow, R. S., Frank, J. H., Karpetis, A. N., and Chen, J.-Y., 2005, “Piloted Methane/Air Jet Flames: Scalar Structure and Transport Effects,” Combust. Flame, 143, pp. 433–449. [CrossRef]
Schneider, C., Dreizler, A., and Janicka, J., 2003, “Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon-Fuelled Jet Flames,” Combust. Flame, 135, pp. 185–190. [CrossRef]
TNF workshop, accessed April 9, 2012, http://www.sandia.gov/TNF/abstract.html
Raman, V., Fox, R. O., and Harvey, A. D., 2004, “Hybrid Finite-Volume/Transported PDF Simulations of a Partially Premixed Methane-Air Flame,” Combust. Flame, 136, pp. 327–350. [CrossRef]
Barlow, R., Karpetis, A.Frank, J., and Chen, J.-Y., 2001, “Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames,” Combust. Flame, 127, pp. 2102–2118. [CrossRef]
Correa, S. M., 1992, “A Review of NOx Formation Under Gas-Turbine Combustion Conditions,” Combust. Sci. Tech., 87, pp. 329–362. [CrossRef]
Habisreuther, P., 2002, “Untersuchungen zur Bildung von Thermischem Stickoxid in Turbulenten Drallflammen,” Ph.D. thesis, Universität Fredericiana Karlsruhe (Technische Hochschule), Karlsruhe, Germany.
Mancini, M., Weber, R., and Bollettini, U., 2002, “Predicting NOx Emissions of a Burner Operated in Flameless Oxidation Mode,” Proc. Combust. Inst., 29(1), pp. 1155–1163. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Boundary conditions for flame calculations

Grahic Jump Location
Fig. 2

Coarse mesh resolution at the fuel nozzle exit

Grahic Jump Location
Fig. 3

Transported PDF computations of hydrogen-air flame with different reaction mechanisms

Grahic Jump Location
Fig. 4

Computations of hydrogen-air flame with different combustion models

Grahic Jump Location
Fig. 5

Axial profiles of Favre averages in methane-air flame

Grahic Jump Location
Fig. 6

Radial profiles of Favre averages in methane-air flame

Grahic Jump Location
Fig. 7

Temperature rms along flame axis in methane-air flame (case 2)

Grahic Jump Location
Fig. 8

Comparison of different combustion model results in methane-air flame

Grahic Jump Location
Fig. 9

Radial profiles of Favre averages in methane-air flame with different combustion models

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In