Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

Prediction of the Thermoacoustic Combustion Instabilities in Practical Annular Combustors

[+] Author and Article Information
Giovanni Campa

Dipartimento di Meccanica,
Matematica e Management,
Politecnico di Bari,
via Re David 200,
Bari 70125, Italy
e-mail: campa@imedado.poliba.it

Sergio Mario Camporeale

Dipartimento di Meccanica,
Matematica e Management,
Politecnico di Bari,
via Re David 200,
Bari 70125, Italy
e-mail: sergio.camporeale@poliba.it

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received December 20, 2012; final manuscript received March 1, 2014; published online March 26, 2014. Assoc. Editor: Kalyan Annamalai.

J. Eng. Gas Turbines Power 136(9), 091504 (Mar 26, 2014) (10 pages) Paper No: GTP-12-1489; doi: 10.1115/1.4027067 History: Received December 20, 2012; Revised March 01, 2014

A three-dimensional finite element code is used for the eigenvalue analysis of the thermoacoustic combustion instabilities modeled through the Helmholtz equation. A full annular combustion chamber, equipped with several burners, is examined. Spatial distributions for the heat release intensity and for the time delay are used for the linear flame model. Burners, connecting the plenum and the chamber, are modeled by means of the transfer matrix method. The influence of the parameters characterizing the burners and the flame on the stability levels of each mode of the system is investigated. The obtained results show the influence of the 3D distribution of the flame on the modes. Additionally, the results show what types of modes are most likely to yield humming in an annular combustion chamber. The proposed methodology is intended to be a practical tool for the interpretation of the thermoacoustic phenomenon (in terms of modes, frequencies, and stability maps) both in the design stage and in the check stage of gas turbine combustion chambers.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Rayleigh, J. W. S., 1878, “The Explanation of Certain Acoustical Phenomena,” Nature, 18, pp. 319–321. [CrossRef]
Huang, Y., and Yang, V., 2009, “Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion,” Prog. Energy Combust. Sci., 35(4), pp. 293–364. [CrossRef]
Lieuwen, T., and V.Yang., 2005, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling (Progress in Astronautics and Aeronautics), American Institute of Aeronautics and Astronautics, Reston, VA. [CrossRef]
Poinsot, T., and Veynante, D., 2001, Theoretical and Numerical Combustion, Edwards, Ann Arbor, MI.
Merk, H. J., 1957, “Analysis of Heat-Driven Oscillations of Gas Flows,” Appl. Sci. Res., Sec. A, 6(4), pp. 317–336. [CrossRef]
Bloxsidge, G. J., Dowling, A. P., and Langhorne, P. J., 1988, “Reheat Buzz: An Acoustically Coupled Combustion Instability,” J. Fluid Mech., 193, pp. 445–473. [CrossRef]
Heckl, M., 1988, “Active Control of the Noise From a Rijke Tube,” J. Sound Vib., 124(1), pp. 117–133. [CrossRef]
Bohn, D., and Deuker, E., 1993, “An Acoustical Model to Predict Combustion Driven Oscillations,” 20th International Congress on Combustion Engines, London, UK, March 17–20. [CrossRef]
Dowling, A. P., 1995, “The Calculation of Thermoacoustic Oscillations,” J. Sound Vib., 180(4), pp. 557–581. [CrossRef]
Dowling, A. P., and Stow, S. R., 2003, “Acoustic Analysis of Gas Turbine Combustors,” J. Propul. Power, 19(5), pp. 751–765. [CrossRef]
Polifke, W., Paschereit, C. O., and Döbbeling, K., 2001, “Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit,” Int. J. Acoust. Vib., 6(3), pp. 135–146.
Schuermans, B., Bellucci, V., and Paschereit, C. O., 2003, “Thermoacoustic Modelling and Control of Multi Burner Combustion Systems,” ASME Paper No. GT2003-38688. [CrossRef]
Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P., and Veynante, D., 2004, “Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes,” Combust. Flame, 137(4), pp. 489–505. [CrossRef]
Benoit, L., 2005, “Prédictions des instabilités thermoacoustiques dans les turbines a gaz,” Ph.D. thesis, Université Montpellier II, Montpellier, France.
Giauque, A., Selle, L., Poinsot, T., Buechner, H., Kaufmann, P., and Krebs, W., 2005, “System Identification of a Large-Scale Swirled Partially Premixed Combustor Using LES and Measurements,” J. Turbulence, 6(21), pp. 1–20. [CrossRef]
Huang, Y., Wang, S., and Yang, V., 2006, “A Systematic Analysis of Combustion Dynamics in a Lean-Premixed Swirl-Stabilized Combustor,” AIAA J., 44(4), pp. 724–740. [CrossRef]
Staffelbach, G., Gicquel, L. Y. M., Boudier, G., and Poinsot, T., 2009, “Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors,” Proc. Combust. Inst., 32(2), pp. 2909–2916. [CrossRef]
Gicquel, L. Y. M., Staffelbach, G., and Poinsot, T., 2012, “Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers,” Prog. Energy Combust. Sci., 38(6), pp. 782–817. [CrossRef]
Pankiewitz, C., and Sattelmayer, T., 2003, “Time Domain Simulation of Combustion Instabilities in Annular Combustors,” ASME J. Eng. Gas Turbines Power, 125(3), pp. 677–685. [CrossRef]
Nicoud, F., Benoit, L., Sensiau, C., and Poinsot, T., 2007, “Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames,” AIAA J., 45(2), pp. 426–441. [CrossRef]
Camporeale, S. M., Fortunato, B., and Campa, G., 2011, “A Finite Element Method for Three-Dimensional Analysis of Thermoacoustic Combustion Instability,” ASME J. Eng. Gas Turbines Power, 133(1), p. 011506. [CrossRef]
Culick, F., 1988, “Combustion Instabilities in Liquid-Fuelled Propulsion Systems: An Overview,” AGARD PEP Meeting, Bath, UK, October 6–7, Report No. 72B.
Martin, C. E., Benoit, L., Sommerer, Y., Nicoud, F., and Poinsot, T., 2006, “Large-Eddy Simulation and Acoustic Analysis of a Swirled Staged Turbulent Combustor,” AIAA J., 44(4), pp. 741–750. [CrossRef]
Wolf, P., Staffelbach, G., Gicquel, L. Y. M., Müller, J.-D., and Poinsot, T., 2012, “Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers,” Combust. Flame, 159(11), pp. 3398–3413. [CrossRef]
Campa, G., and Camporeale, S. M., 2010, “Influence of Flame and Burner Transfer Matrix on Thermoacoustic Combustion Instability Modes and Frequencies,” ASME Paper No. GT2010-23104. [CrossRef]
Strogatz, S. H., 2001, Nonlinear Dynamics and Chaos, Westview Press, Boulder, CO.
Noiray, N., Durox, D., Schuller, T., and Candel, S., 2008, “A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function,” J. Fluid Mech., 615, pp. 139–167. [CrossRef]
Balasubramanian, K., and Sujith, R. I., 2008, “Thermoacoustic Instability in a Rijke Tube: Nonnormality and Nonlinearity,” Phys. Fluids, 20, p. 044103. [CrossRef]
Juniper, M. P., 2011, “Triggering in the Horizontal Rijke Tube: Non-Normality, Transient Growth and Bypass Transition,” J. Fluid Mech., 667, pp. 272–308. [CrossRef]
Sensiau, C., Nicoud, F., and Poinsot, T., 2009, “A Tool to Study Azimuthal Standing and Spinning Modes in Annular Combustors,” Int. J. Aeroacoust., 8(1–2), pp. 57–68. [CrossRef]
Parmentier, J., Salas, P., Wolf, P., Staffelbach, G., Nicoud, F., and Poinsot, T., 2012, “A Simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers,” Combust. Flame, 159(7), pp. 2374–2387. [CrossRef]
Schuller, T., Durox, D., Palies, P., and Candel, S., 2012, “Acoustic Decoupling of Longitudinal Modes in Generic Combustion Systems,” Combust. Flame, 159(5), pp. 1921–1931. [CrossRef]
Fanaca, D., Alemela, P. R., Ettner, F., Hirsch, C., Sattelmayer, T., and Schuermans, B., 2008, “Determination and Comparison of the Dynamic Characteristics of a Perfectly Premixed Flame in Both Single and Annular Combustion Chamber,” ASME Paper No. GT2008-50781. [CrossRef]
Alemela, P. R., Fanaca, D., Ettner, F., Hirsch, C., Sattelmayer, T., and Schuermans, B., 2008, “Flame Transfer Matrices of a Premixed Flame and a Global Check With Modeling and Experiments,” ASME Paper No. GT2008-50111. [CrossRef]
Campa, G., Camporeale, S. M., Guaus, A., Favier, J., Bargiacchi, M., Bottaro, A., CosattoE., and Mori, G., 2011, “A Quantitative Comparison Between a Low Order Model and a 3D FEM Code for the Study of Thermoacoustic Combustion Instability,” ASME Paper No. GT2011-45969. [CrossRef]
Kato, S., Fujimori, T., Dowling, A. P., and Kobayashi, H., 2005, “Effect of Heat Release Distribution on Combustion Oscillation,” Proc. Combust. Inst., 30(2), pp. 1799–1806. [CrossRef]
Polifke, W., Paschereit, C. O., and Sattelmayer, T., 1997, “A Universally Applicable Stability Criterion for Complex Thermoacoustic Systems,” 18th Deutsch-Niederländischer Flammentag, Vol. 1313, VDI Bericht, Delft, The Netherlands, pp. 455–460.
Polifke, W., 2004, “Combustion Instabilities” (von Kármán Institute Lecture Series), von Kármán Institute, Sint-Genesius-Rode, Belgium.
Schuermans, B., 2003, “Modelling and Control of Thermoacoustic Instabilities,” Ph.D. thesis, École Poytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Cohen, J. M., and Anderson, T. J., 1996, “Experimental Investigation of Near-Blowout Instabilities in a Lean, Premixed Step Combustor,” AIAA Paper No. 1996-0819. [CrossRef]
Lieuwen, T., Neumeier, Y., and Zinn, B. T., 1998, “The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors,” Combust., Sci. Technol., 135(1–6), pp. 193–211. [CrossRef]
Sattelmayer, T., 2000, “Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations,” ASME Paper No. 2000-GT-0082.
Lieuwen, T., Torres, H., Johnson, C., and Zinn, B. T., 2001, “A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors,” ASME J. Eng. Gas Turbine Power, 123(1), pp. 182–189. [CrossRef]
You, D., Huang, Y., and Yang, V., 2005, “A Generalized Model of Acoustic Response of Turbulent Premixed Flame and Its Application to Gas-Turbine Combustion Instability Analysis,” Combust., Sci. Technol., 177(5–6), pp. 1109–1150. [CrossRef]
Lieuwen, T., 2003, “Modeling Premixed Combustion-Acoustic Wave Interactions: A Review,” J. Propul. Power, 19(5), pp. 765–781. [CrossRef]
Zito, D., Bonzani, F., Piana, C., and Chiarioni, A., 2010, “Design Validation of Pressurized Test Rig of Upgraded VeLoNOxTM Combustion System for F-Class Engine,” ASME Paper No. GT2010-22256. [CrossRef]
Krebs, W., Flohr, P., Prade, B., and Hoffmann, S., 2002, “Thermoacoustic Stability Chart for High Intensity Gas Turbine Combustion Systems,” Combust. Sci. Technol., 174(7), pp. 99–128. [CrossRef]
Paschereit, C. O., Schuermans, B., Bellucci, V., and Flohr, P., 2005, “Implementation of Instability Prediction in Design: Alstom Approaches,” Combustion Instabilities in Gas Turbine Engines, Progress in Astronautics and Aeronautics, Vol. 210, T. C.Lieuwen and V.Yang, eds., American Institute of Aeronautics and Astronautics, Reston, VA, pp. 445–481. [CrossRef]
COMSOL, 2007, “COMSOL Multiphysics User's Manual,” COMSOL, Burlington, MA.
Lehoucq, R., Sorensen, D., and Yang, C., 1998, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods , Vol. 6, SIAM, Philadelphia, PA.
Waltz, G., Krebs, W., Hoffman, S., and Judith, H., 2002, “Detailed Analysis of the Acoustic Mode Shapes of an Annular Combustion Chamber,” ASME J. Eng. Gas Turbines Power, 124(1), pp. 3–9. [CrossRef]
Forte, A., Camporeale, S., Fortunato, B., Di Bisceglie, F., and Mastrovito, M., 2006, “Effect of Burner and Resonator Impedances on the Acoustic Behaviour of Annular Combustion Chamber,” ASME Paper No. GT2006-90423. [CrossRef]
Culick, F. E. C., 1976, “Nonlinear Behavior of Acoustic Waves in Combustion Chambers, Parts I and II,” Acta Astronaut., 47(13), pp. 715–734. [CrossRef]
Kim, K. T., Lee, J. G., Quay, B. D., and Santavicca, D. A., 2010, “Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations,” Combust. Flame, 157(9), pp. 1731–1744. [CrossRef]


Grahic Jump Location
Fig. 1

Computational domain and boundary conditions of the annular combustion chamber

Grahic Jump Location
Fig. 2

Computational grid of the annular combustion chamber

Grahic Jump Location
Fig. 3

Schematization of the burner transfer matrix on the left, with the downstream junction of the BTM highlighted in the right

Grahic Jump Location
Fig. 4

Sketch of one element of the injection system and the initial path lines of the particles

Grahic Jump Location
Fig. 5

Temperature field from RANS simulation. The values are normalized against the maximum corresponding value.

Grahic Jump Location
Fig. 6

Normalized heat release distributions obtained from RANS simulation

Grahic Jump Location
Fig. 7

Normalized time delay distributions obtained from RANS simulations

Grahic Jump Location
Fig. 8

On the left side mode 3, axial waveform, and on the right side mode 4, azimuthal waveform n = 1 in the entire system

Grahic Jump Location
Fig. 9

On the left side mode 8, azimuthal waveform n = 3 in the plenum, and on the right side mode 13, azimuthal waveform n = 2 in the combustion chamber and mixed mode in the plenum

Grahic Jump Location
Fig. 10

Combustion chamber modes for different values of ζ with the spatially distributed flame, Eq. (13). τ = 7 ms.

Grahic Jump Location
Fig. 11

Combustion chamber modes for different values of τ with the spatially distributed flame, Eq. (13). Pressure loss coefficient ζ = 0.98.

Grahic Jump Location
Fig. 12

Mode 3 (a) and mode 13 (b) patterns for different values of τ with the spatially distributed flame, Eq. (13): growth rate and Rayleigh index

Grahic Jump Location
Fig. 13

Rayleigh index for mode 3 (a) and mode 13 (b) for three different cases: τ = 5 ms, τ = 7 ms, and spatial distribution of τ

Grahic Jump Location
Fig. 14

Mode 13 patterns for different values of κ, Eq. (13)

Grahic Jump Location
Fig. 15

Computational domain of the whole annular combustion chamber, of half system, and of a quarter of the system




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In