0
Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

Uptake Coefficients of Some Volatile Organic Compounds by Soot and Their Application in Understanding Particulate Matter Evolution in Aircraft Engine Exhaust Plumes

[+] Author and Article Information
Zhenhong Yu

Aerodyne Research, Inc.,
45 Manning Road,
Billerica, MA 01821
e-mail: zyu@aerodyne.com

David S. Liscinsky

United Technologies Research Center,
411 Silver Lane,
East Hartford, CT 06108
e-mail: LiscinDS@utrc.utc.com

Bruce True

United Technologies Research Center,
411 Silver Lane,
East Hartford, CT 06108
e-mail: TrueBS@utrc.utc.com

Jay Peck

Aerodyne Research, Inc.,
45 Manning Road,
Billerica, MA 01821
e-mail: jpeck@aerodyne.com

Archer C. Jennings

United Technologies Research Center,
411 Silver Lane,
East Hartford, CT 06108
e-mail: jenninac@utrc.utc.com

Hsi-Wu Wong

Aerodyne Research, Inc.,
45 Manning Road,
Billerica, MA 01821
e-mail: hwwong@aerodyne.com

Mina Jun

Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
e-mail: mina.jun@gmail.com

Jonathan Franklin

Aerodyne Research, Inc.,
45 Manning Road,
Billerica, MA 01821
e-mail: jfranklin@aerodyne.com

Scott C. Herndon

Aerodyne Research, Inc.,
45 Manning Road,
Billerica, MA 01821
e-mail: herndon@aerodyne.com

Ian A. Waitz

Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
e-mail: iaw@mit.edu

Richard C. Miake-Lye

Aerodyne Research, Inc.,
45 Manning Road,
Billerica, MA 01821
e-mail: rick@aerodyne.com

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received March 25, 2014; final manuscript received April 7, 2014; published online June 27, 2014. Editor: David Wisler.

J. Eng. Gas Turbines Power 136(12), 121501 (Jun 27, 2014) (8 pages) Paper No: GTP-14-1166; doi: 10.1115/1.4027707 History: Received March 25, 2014; Revised April 07, 2014

To assist microphysical modeling on particulate matter (PM) evolution emitted from aircraft engines, uptake coefficients of some volatile organic compounds on soot were experimentally determined in this study. The determined values vary from (1.0 ± 0.1) × 10−6 for water-miscible propylene glycol to (2.5 ± 0.1) × 10−5 for 2,6-dimethylnaphthalene, a polycyclic aromatic hydrocarbon. An inverse power-law correlation between uptake coefficient on soot and solubility in water was observed. Using the correlation, microphysical simulations were performed for the exhaust plume evolution from an idling aircraft, and we found that the model-predicted volatile PM composition on soot is comparable with those results from past field measurements.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Schlager, H., Konopka, P., Schulte, P., Schumann, U., Ziereis, H., Arnold, F., Klemm, M., Hagen, D. E., Whitefield, P. D., and Ovarlez, J., 1997, “In Situ Observation of Air Traffic Emission Signatures in the North Atlantic Flight Corridor,” J. Geophys. Res., 102(D9), pp. 10739–10750. [CrossRef]
Anderson, B. E., Cofer, W. R., Bagwell, D. R., Barrick, J. W., Hudgins, C. H., and Brunke, K. E., 1998, “Airborne Observations of Aircraft Aerosol Emissions I: Total Nonvolatile Particle Emission Indices,” Geophys. Res. Lett., 25(10), pp. 1689–1692. [CrossRef]
Paladino, J., Whitefield, P., Hagen, D., Hopkins, A. R., and Trueblood, M., 1998, “Particle Concentration Characterization for Jet Engine Emissions Under Cruise Conditions,” Geophys. Res. Lett., 25(10), pp. 1697–1700. [CrossRef]
Schuman, U., Arnold, F., Busen, R., Curtis, J., Karcher, B., Kiendler, A., Petzold, A., Schlager, H., Schroder, F., and Wohlfrom, K. H., 2002, “Influence of Fuel Sulfur on the Composition of Aircraft Exhaust Plumes: The Experiments SULFUR 1-7,” J. Geophys. Res., 107(D15), p. 4247. [CrossRef]
Unal, A., Hu, Y., Chang, M. E., Talat Odman, M., and Russell, A. G., 2005, “Airport Related Emissions and Impacts on Air Quality: Application to the Atlanta International Airport,” Atmos. Environ., 39(32), pp. 5787–5798. [CrossRef]
Wey, C. C., Anderson, B. E., Wey, C., Miake-Lye, R. C., Whitefield, P., and Howard, R., 2007, “Overview on the Aircraft Particle Emissions Experiment,” J. Propul. Power, 23(5), pp. 898–905. [CrossRef]
Kärcher, B., and Yu, F., 2009, “Role of Aircraft Soot Emissions in Contrail Formation,” Geophys. Res. Lett., 36(1), p. L01804. [CrossRef]
Wong, H.-W., and Miake-Lye, R. C., 2010, “Parametric Studies of Contrail Ice Particle Formation in Jet Regime Using One-Dimensional Microphysical Modeling,” Atmos. Chem. Phys., 10(7), pp. 3261–3272. [CrossRef]
Seisel, S., Lian, Y., Keil, T., Trukhin, M. E., and Zellner, R., 2004, “Kinetics of the Interaction of Water Vapor With Mineral Dust and Soot Surfaces at T = 298 K,” Phys. Chem. Chem. Phys., 6(8), pp. 1926–1932. [CrossRef]
Kotzick, R., Panne, U., and Niessner, R., 1997, “Changes in Condensation Properties of Ultrafine Carbon Particles Subjected to Oxidation by Ozone,” J. Aerosol Sci., 28(5), pp. 725–735. [CrossRef]
Zuberi, B., Johnson, K. S., Aleks, G. K., Molina, L. T., Molina, M. J., and Laskin, A., 2005, “Hydrophilic Properties of Aged Soot,” Geophys. Res. Lett., 32(1), p. L01807 [CrossRef].
Prince, A. P., Wade, J. L., Grassian, V. H., Kleiber, P. D., and Yound, M. A., 2002, “Heterogeneous Reactions of Soot Aerosols With Nitrogen Dioxide and Nitric Acid: Atmospheric Chamber and Knudsen Cell Studies,” Atmos. Environ., 36(36-37), pp. 5729–5740. [CrossRef]
Zuberi, B., Jognson, K. S., Aleks, G. K., Molina, L. T., Molina, M. J., and Laskin, A., 2005, “Hydrophilic Properties of Aged Soot,” Geophys. Res. Lett., 32(1), p. L01807 [CrossRef].
Disselkamp, R. S., Carpenter, M. A., and Cowin, J. P., 2000, “A Chamber Investigation of Nitric Acid-Soot Aerosol Chemistry at 298 K,” J. Atmos. Chem., 37(2), pp. 113–123. [CrossRef]
Kleffmann, J., and Wiesen, P., 2005, “Heterogeneous Conversion of NO2 and NO on HNO3 Treated Soot Surfaces: Atmospheric Implications,” Atmos. Chem. Phys., 5(1), pp. 77–83. [CrossRef]
Longfellow, C. A., Ravishankara, A. R., and Hanson, D. R., 2000, “Reactive and Nonreactive Uptake on Hydrocarbon Soot: HNO3, O3, and N2O5,” J. Geophys. Res., 105(D19), pp. 24345–24350. [CrossRef]
Talukdar, R. K., Loukhovitskaya, E. E., Popovicheva, O. B., and Ravishankara, A. R., 2006, “Uptake of HNO3 on Hexane and Aviation Kerosene Soots,” J. Phys. Chem. A, 110(31), pp. 9643–9653. [CrossRef] [PubMed]
Rogaski, C. A., Golden, D. M., and Williams, L. R., 1997, “Reactive Uptake and Hydration Experiments on Amorphous Carbon Treated With NO2, SO2, O3, HNO3, and H2SO4,” Geophys. Res. Lett., 24(4), pp. 381–384. [CrossRef]
Saathoff, H., Naumman, K.-H., Riemer, N., Kamm, S., Möhler, O., Schurath, U., Vogel, H., and Vogel, B., 2001, “The Loss of NO2, HNO3, NO3/N2O5, and HO2/HOONO2 on Soot Aerosol: A Chamber and Modeling Study,” Geophys. Res. Lett., 28(10), pp. 1957–1960. [CrossRef]
Kircher, U., Scheer, V., and Vogt, R., 2000, “FTIR Spectroscopic Investigation of the Mechanism and Kinetics of the Heterogeneous Reaction of NO2 and HNO3 With Soot,”J. Phys. Chem. A, 104(39), pp. 8908–8915. [CrossRef]
Karagulian, F., and Rossi, M. J., 2007, “Heterogeneous Chemistry of the NO3 Free Radical and N2O5 on Decane Flame Soot at Ambient Temperature: Reaction Products and Kinetics,” J. Phys. Chem. A, 111(10), pp. 1914–1926. [CrossRef] [PubMed]
Rodriguez-Fortea, A., and Iannuzzi, M., 2008, “First-Principles Molecular Dynamics Study of the Heterogeneous Reduction of NO2 on Soot Surface,” J. Phys. Chem. C, 112(49), pp. 19642–19648. [CrossRef]
Aubin, D. G., and Abbatt, J. P. D., 2007, “Interaction of NO2 With Hydrocarbon Soot: Focus on HONO Yield, Surface Modification, and Mechanism,” J. Phys. Chem. A, 111(28), pp. 6263–6273. [CrossRef] [PubMed]
Ghigo, G., Causa, M., Maranzana, A., and Tonachini, G., 2006, “Aromatic Hydrocarbon Nitration Under Tropospheric and Combustion Conditions. A Theoretical Mechanistic Study,” J. Phys. Chem. A, 110(49), pp. 13270–13282. [CrossRef] [PubMed]
Ammann, M., Kalberer, M., Jost, D. T., Tobler, L., Rössler, E., Piguet, D., Gäggeler, H. W., and Baltensperger, U., 1998, “Heterogeneous Production of Nitrous Acid on Soot in Polluted Air Masses,”Nature, 395(6698), pp. 157–160. [CrossRef]
Saathoff, H., Naumann, K.-H., Möhler, O., Jonsson, A. M., Hallquist, M., Kiendler-Scharr, A., Mentel, Th. F., Tillmann, R., and Schurath, U., 2008, “Temperature Dependence of Yields of Secondary Organic Aerosols From the Ozonolysis of α-Pinene and Limonene,” Atmos. Chem. Phys. Discuss., 8(4), pp. 15595–15664. [CrossRef]
Zhang, H. Z., Li, Y. Q., Xia, J. R., Davidovits, P., Williams, L. R., Jayne, J. T., Kolb, C. E., and Worsnop, D. R., 2003, “Uptake of Gas-Phase Species by 1-Octanol. I. Uptake of α-Pinene, γ-Terpinene, p-Cymene, and 2-Methyl-2-Hexanol as a Function of Relative Humidity and Temperature,” J. Phys. Chem. A, 107(33), pp. 6388–6397. [CrossRef]
Zhang, H. Z., Li, Y. Q., Davidovits, P., Williams, L. R., Jayne, J. T., Kolb, C. E., and Worsnop, D. R., 2003, “Uptake of Gas-Phase Species by 1-Octanol. II. Uptake of Hydrogen Halides and Acetic Acid as a Function of Relative Humidity and Temperature,” J. Phys. Chem. A, 107(33), pp. 6398–6407. [CrossRef]
Liscinsky, D. S., Yu, Z., True, B., Peck, J., Jennings, A. C., Wong, H. W., Jun, M., Franklin, J., Herndon, S. C., Waitz, I., and Miake-Lye, R. C., 2013, “Uptake of Naphthalene by Combustion Soot Particles,” Environ. Sci. Technol., 47(9), pp. 4875–4881. [CrossRef] [PubMed]
Eganhouse, R. P., and Calder, J. A., 1976, “The Solubility of Medium Molecular Weight Aromatic Hydrocarbons and the Effects of Hydrocarbon Co-Solutes and Salinity,” Geochim. Cosmochim. Acta, 40(5), pp. 555–561. [CrossRef]
Spicer, C. W., Holdren, M. W., Smith, D. L., Hughes, D. P., and Smith, M. D., 1992, “Chemical Composition of Exhaust From Aircraft Turbine Engines,” ASME J. Eng. Gas Turbines Power, 114(1), pp. 111–117. [CrossRef]
Knighton, W. B., Rogers, T., Wey, C. C., Anderson, B. E., Herndon, S. C., Yelvington, P. E., and Miake-Lye, R. C, 2007, “Application of Proton Transfer Reaction Mass Spectrometry (PTR-MS) for Measurement of Volatile Organic Trace Gas Emissions From Aircraft,” J. Propul. Power, 23(5), pp. 949–958. [CrossRef]
Henning, S., Ziese, M., Kiselev, A., Saathoff, H., Möhler, O., Mentel, T. F., Buchholz, A., Spindler, C., Michaud, V., Monier, M., Sellegri, K., and Stratmann, F., 2012, “Hygroscopic Growth and Droplet Activation of Soot Particles: Uncoated, Succinic or Sulfuric Acid Coated,” Atmos. Chem. Phys., 12(10), pp. 4525–4537. [CrossRef]
Marsh, R., Crayford, A., Petzold, A., Johnson, M., Williams, P., Ibrahim, A., Kay, P., Morris, S., Delhaye, D., Lottin, D., Vancassel, X., Raper, D., Christie, S., Bennett, M., Miller, M., Sevcenco, Y., Rojo, C., Coe, H., and Bowen, P., 2011, “Studying, Sampling and Measuring of Aircraft Particulate Emissions II (SAMPLE II)—Final Report,” European Aviation Safety Agency, Cologne, Germany, Report No. EASA.2009.OP.18.
Timko, M. T., Onasch, T. B., Northway, M. J., Jayne, J. T., Canagaratna, M. R., Herndon, S. C., Wood, E. C., Miake-Lye, R. C., and Knighton, W. B., 2010, “Gas Turbine Engine Emissions—Part II: Chemical Properties of Particulate Matter,” ASME J. Eng. Gas Turbine Power, 132(6), p. 061505. [CrossRef]
McWilliam, I. G., and DeWar, R. A., 1958, “Flame Ionization Detector for Gas Chromatography,” Nature, 181(4611), p. 760. [CrossRef]
Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E., and Worsnop, D. R., 2000, “Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles,” Aerosol Sci. Technol., 33(1-2), pp. 49–70. [CrossRef]
Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X., Smith, K. A., Morris, J., and Davidovits, P., 2003, “Ambient Aerosol Sampling Using the Aerodyne Aerosol Mass Spectrometer,” J. Geophys. Res., 108(D7), p. 8425. [CrossRef] [CrossRef]
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R., 2007, “Chemical and Microphysical Characterization of Ambient Aerosols With the Aerodyne Aerosol Mass Spectrometer,” Mass Spectrosc. Rev., 26(2), pp. 185–222. [CrossRef]
Linstrom, P. J., and Mallard, W. J., eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD.
Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T., Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R., and Deshler, T., 2007, “Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer,” Aerosol Sci. Technol., 41(8), pp. 721–733. [CrossRef]
Seinfeld, J. H., and Pandis, S. N., 1998, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York.
Davidovits, P., Hu, J. H., Worsnop, D. R., Zahnister, M. S., and Kolb, C. E., 1995, “Entry of Gas Molecules Into Liquids,” Faraday Discuss., 100, pp. 65–82. [CrossRef]
Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Watson, L. R., Van Doren, J. M., Jayen, J. T., and Davidovits, P., 1989, “Temperature Dependence of Mass Accommodation of SO2 and H2O2 on Aqueous Surfaces,” J. Phys. Chem., 93(3), pp. 1159–1172. [CrossRef]
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L., 2004, “Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory,” Aerosol Sci. Technol., 38(12), pp. 1185–1205. [CrossRef]
Slowik, J. G., Stainken, K., Davidovits, P., Williams, L. R., Jayne, J. T., Kolb, C. E., Worsnop, D. R., Rudich, Y., DeCarlo, P. F., and Jimenez, J. L., 2004, “Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio,” Aerosol Sci. Technol., 38(12), pp. 1206–1222. [CrossRef]
Brunauer, S., Emmett, P. H., and Teller, E., 1938, “Adsorption of Gases in Multi-Molecular Layers,” J. Am. Chem. Soc., 60(2), pp. 309–319. [CrossRef]
Levitt, N. P., Zhang, R., Xue, H., and Chen, J., 2007, “Heterogeneous Chemistry of Organic Acids on Soot Surfaces,” J. Phys. Chem. A, 111(22), pp. 4804–4814. [CrossRef] [PubMed]
Aubin, D. G., and Abbatt, J. P., 2003, “Adsorption of Gaseous Nitric Acid to n-Hexane Soot: Thermodynamics and Mechanism,” J. Phys. Chem. A, 107(50), pp. 11030–11037. [CrossRef]
Hanson, D. R., Ravishankara, A. R., and Lovejoy, E. R., 1996, “Reaction of BrONO2 With H2O on Submicron Sulfuric Acid Aerosol and the Implications for the Lower Stratosphere,” J. Geophys. Res., 101(D4), pp. 9063–9069. [CrossRef]
Hermann, R. B., 1972, “Theory of Hydrophobic Bonding. II. Correlation of Hydrocarbon Solubility in Water With Solvent Cavity Surface Area,” J. Phys. Chem., 76(19), pp. 2754–2759. [CrossRef]
Pierotti, R. A., 1976, “A Scaled Particle Theory of Aqueous and Nonaqueous Solutions,” Chem. Rev., 76(6), pp. 717–726. [CrossRef]
Breslow, R., 1991, “Hydrophobic Effect on Simple Organic Reactions in Water,” Acc. Chem. Res., 24(6), pp. 159–164. [CrossRef]
Ruelle, P., Buchmann, M., Nam-Tran, H., and Kesselring, U. W., 1992, “Comparison of the Solubility of Polycyclic Aeromatic Hydrocarbons in Non-associated and Associated Solvents: The Hydrophobic Effect,” Int. J. Pharm., 87(1-3), pp. 47–57. [CrossRef]
Seth, R., Mackay, D., and Muncke, J., 1999, “Estimating the Organic Carbon Partition Coefficient and Its Variability for Hydrophobic Chemicals,” Environ. Sci. Technol., 33(14), pp. 2390–2394. [CrossRef]
Meyer, E. E., Rosenberg, K. J., and Israelachvili, J., 2006, “Recent Progress in Understanding Hydrophobic Interactions,” Proc. Natl. Acad. Sci. USA, 103(43), pp. 15739–15746. [CrossRef]
Wong, H.-W., Yelvington, P. E., Timko, M. T., Onasch, T. B., Miake-Lye, R. C., Zhang, J., and Waitz, I. A., 2008, “Microphysical Modeling of Ground-Level Aircraft-Emitted Aerosol Formation: Roles of Sulfur-Containing Species,” J. Propul. Power, 24(3), pp. 590–602. [CrossRef]
Jun, M., 2011, “Microphysical Modeling of Ultrafine Hydrocarbon-Containing Aerosols in Aircraft Emissions,” Ph.D. dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N., 2007, “Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,” Science, 315(5816), pp. 1259–1262. [CrossRef] [PubMed]
May, A. A., Presto, A. A., Hennington, C. J., Nguyen, N. T., Gordon, T. D., and Robinson, A. L., 2013, “Gas-Particle Partitioning of Primary Organic Aerosol Emissions: (2) Diesel Vehicles,” Environ. Sci. Technol., 47(15), pp. 8288–8296. [CrossRef] [PubMed]
Lukachko, S. P., Waitz, I. A., Miake-Lye, R. C., and Brown, R. C., 2008, “Engine Design and Operational Impacts on Particulate Matter Precursor Emissions,” ASME J. Eng. Gas Turbines Power, 130(2), p. 021505. [CrossRef]
Tremmel, H. G., and Schumann, U., 1999, “Model Simulations of Fuel Sulfur Conversion Efficiencies in an Aircraft Engine: Dependence on Reaction Rate Constants and Initial Species Mixing Ratios,” Aerosp. Sci. Technol., 3(7), pp. 417–430. [CrossRef]
Pande, S. G., and Handy, D. R., 1995, “An In-Depth Evaluation of Combustion Performance Predictors of Aviation Sooting Tendencies,” Energy Fuels, 9(3), pp. 448–457. [CrossRef]
Curtis, J., Arnold, F., and Schulte, P., 2002, “Sulfuric Acid Measurements in the Exhaust Plume of a Jet Aircraft in Flight: Implications of the Sulfuric Acid Formation Efficiency,” Geophys. Res. Lett., 29(7), p. 1113. [CrossRef]
Katragkou, E., Wilhelm, S., Arnold, F., and Wilson, C., 2004, “First Gaseous Sulfur (VI) Measurements in the Simulated Internal Flow of an Aircraft Engine During Project PartEmis,” Geophys. Res. Lett., 31, p. L02117. [CrossRef]
Nickels, T. B., and Perry, A. E., 1996, “An Experimental and Theoretical Study of the Turbulent Coflowing Jet,” J. Fluid Mech., 309, pp. 157–182. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

A portion of simultaneous HFID and CToF-AMS measurements on uptake of phenol by soot

Grahic Jump Location
Fig. 2

The SMPS measurement on soot particle growth from uptake of 15.6 ppm phenol

Grahic Jump Location
Fig. 3

The BET adsorption isotherm of the denuded combustion soot particles from mini-CAST soot generator

Grahic Jump Location
Fig. 4

The power-law correlation between γ and S, where γ is the determined uptake coefficient on soot and S is solubility in water. The linear regression fit yields a = −0.30 ± 0.02 and constant C = −5.41 ± 0.02, with a correlation coefficient, R2= 0.998, implying a very strong correlation.

Grahic Jump Location
Fig. 5

The simulated mass fraction of naphthalene, methylnaphthalene, dimethylnaphthalene, and phenol on soot emitted from CFM56 aircraft engine. The determined uptake coefficients in this study were used as dry mass accommodation coefficients in the modeling.

Grahic Jump Location
Fig. 6

The simulated mass fraction of sulfuric acid in vapor phase, liquid droplets, and coated on soot surface emitted from a CFM56 aircraft engine

Grahic Jump Location
Fig. 7

Volume increase per particle versus downstream distance, due to volatile PM composition coated on soot surface, including organics, sulfuric acid and water

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In