Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

Modeling the Gas Turbine Engine Under Its Dynamic Heating Conditions

[+] Author and Article Information
Sergiy V. Yepifanov

Zhukovsky National Aerospace University,
Kharkov Aviation Institute,
17, Chkalov Street,
Kharkov 61070, Ukraine
e-mail: syepifanov@yandex.ru

Roman L. Zelenskyi

Zhukovsky National Aerospace University,
Kharkov Aviation Institute,
17, Chkalov Street,
Kharkov 61070, Ukraine
e-mail: meerkat_r@ukr.net

Igor Loboda

Instituto Politecnico Nacional,
Escuela Superior de Ingenieria
Mecanica y Electrica,
Av. Santa Ana, 1000,
Distrito Federal 04430, Mexico
e-mail: iloboda@ipn.mx

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 21, 2014; final manuscript received July 29, 2014; published online October 7, 2014. Editor: David Wisler.

J. Eng. Gas Turbines Power 137(3), 031506 (Oct 07, 2014) (10 pages) Paper No: GTP-14-1419; doi: 10.1115/1.4028449 History: Received July 21, 2014; Revised July 29, 2014

A modern gas turbine engine (GTE) is a complex nonlinear dynamic system with the mutual effect of gas-dynamic and thermal processes in its components. The engine development requires the precise real-time simulation of all main operating modes. One of the most complex operating modes for modeling is “cold stabilization,” which is the rotors acceleration without completely heated up the turbine elements. The dynamic heating problem is a topical practical issue. Solving the problem requires coordinating a gas-path model with heat and stress models, which is also a significant scientific problem. The phenomenon of interest is the radial clearances change during engines operation and its influence on engines static and dynamic performances. To consider the clearance change, it is necessary to synthesize the quick proceeding stress-state models (QPSSM) of a rotor and a casing for the initial temperature and dynamic heating. The unique feature of the QPSSM of GTEs is separate equation sets, which allow the heat exchange between structure elements and the gas (air) and the displacements of the turbine rotor and the casing. This ability appears as a result of determining the effect of each factor on different structural elements of the engine. The presented method significantly simplifies the model identification, which can be performed based on a precise calculation of the unsteady temperature fields of the structural elements and the variation of the radial clearance. Thus, the present paper addresses a new method to model the engine dynamics considering its heating up. The method is based on the integration of three models: the gas-path dynamics model, the clearance dynamics model, and the model of the clearance effect on the efficiency. The paper also comprises the program implementation of the models. The method was tested by applying to a particular turbofan engine.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Sobey, A. J., and Suggs, A. M., 1963, Control of Aircraft and Missile Powerplants, Wiley, New York.
Saravanomuttoo, H. I. H., and Fawke, A. J., 1973, “Simulation of Gas Turbine Dynamic Performance,” ASME Paper No. 70-GT-23.
Jaw, L. C., and Mattingly, J. D., 2009, Aircraft Engines Controls: Design, System Analysis, and Health Monitoring, American Institute of Aeronautics and Astronautics, Inc., Reston, VA.
Kurzke, J., 2011, “Transient Simulations During Preliminary Conceptual Engine Design,” ISABE Paper No. 2011-1321.
Gritsenko, E. A., Danilchenko, V. P., Lukachev, S. V., Kovyilov, Yu. L., Reznik, V. E., and Tsyibizov, Yu. I., 2002, Some Aspects of Aircraft Gas Turbine Engine Designing, RAC, Samara, Russian Federation, p. 527.
Philidis, P., and Maccalum, H. I. H., 1984, “A Study of the Prediction of the Tip and Seal Clearances and Their Effect in Gas Turbine Transient Transients,” ASME Paper No. 84-GT-245.
Nielsen, A. E., Moll, C. W., and Staudacher, S., 2004, “Modeling and Validation of the Thermal Effects on Gas Turbine Transients,” ASME Paper No. GT2004-53344. [CrossRef]
Merkler, R. S., and Staudacher, S., 2006, “Modeling of Heat Transfer and Clearance Changes in Transient Performance Calculations—A Comparison,” ASME Paper No. GT2006-90041. [CrossRef]
Bouillet, P., 1984, “L'evolution de la technology des turboreactours de forte puissance,” L'aeronautique et l'astronautique, 107, рp. 4–29.
Litvinov, J. A., and Borovik, V. O., 1979, Performances and Maintenance Features of Aircraft Jet Engines, (Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей), Машиностроение, Moscow, Russian Federation, pp. 288.
Tallman, J., and Lakshminarayana, B., 2000, “Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics. Part I: Effect of Tip Clearance Height,” ASME J. Turbomach., 123(2), pp. 314–323. [CrossRef]
Zhengming, X. J., and Cai, W. R., 2001, “Numerical Investigation of Different Tip Gap Shape Effects on Aerodynamic Performance of an Axial-Flow Compressor Casing,” ASME Paper No. 2001-GT-0337. [CrossRef]
Kofman, V. M., and Petrov, G. G., 1983, “Analysis of Mathematical Modeling Results Being Influenced by Errors in Setting Components' Performances at Steady Modes,” (Оценка влияния точности задания стационарных характеристик узлов ТРД на результаты математического моделирования его неустановившихся режимов. Вопросы теории и расчета рабочих процессов тепловых двигателей), Theor. Comp. Aspects Work. Process Heat Eng., 7, pp. 89–92.
Dobryanskiy, V. G., and Martyanova, T. S., 1989, Aircraft GTEs Dynamics, (Динамика авиационных ГТД), Машиностроение, Moscow, Russian Federation, pp. 240.
Gurevich, O. S., Golberg, F. D., and Selivanov, O. D., 1993, Coordinated Control of Aircraft With Multimode Power Plant, (Интегрированное управление силовой установкой многорежимного самолета; под общей ред. Гуревича О. С.), Машиностроение, Moscow, Russian Federation, pp. 304.
Krikunov, D. V., Simbirskiy, D. F., and Oleynik, A. V., 2001, “Model of Heat Exchange Boundary Conditions of GTE Rotating Parts for Lifetime Exhaustion Monitoring,” (Модель граничных условий конвективного теплообмена роторных деталей ГТД для систем учета выработки ресурса), Авиационно-космическая техника и технология, Aerosp. Techn. Tech., 9(23), pp. 131–141.
Yepifanov, S. V., Kuznetzov, B. I., Bogayenko, I. N.et al. ., 1998, Synthesis of Control and Diagnostic Systems of Gas-Turbine Engines, (Синтез систем управления и диагностирования газотурбинных двигателей), Техника, Kiev, Russia, pp. 311.
Oleynik, A. V., 2004, “Heat State Monitoring of GTE Parts in a Form of Dynamic Finite Element Problem in the State Space,” (Эксплуатационный мониторинг температурного состояния детали газотурбинного двигателя как задача динамики конечно –элементной модели в пространстве состояний) Авиационно-космическая техника и технология, Aerosp. Techn. Tech., 4(12), pp. 38–42.
Kopelev, S. Z., and Slitenko, A. F., 1994, Designing and Analysis of GTE Cooling Systems(Конструкции и расчет систем охлаждения ГТД), Основа, Kharkov State University, Kharkiv, Ukraine, pp. 240.
Shvets, I. T., and Dyiban, E. P., 1974, Cooling Parts of Turbines With Air, (Воздушное охлаждение деталей газовых турбин), Наукова думка, Kiev, Ukraine, pp. 487.
Oleynik, O. V., 2006, “The Concept and Methods of Lifetime Depletion Monitoring of Gas Turbine Air-Engine Based on a Dynamic Identification of Thermal and Stress Condition of Main Details,” D.S. (Engineering) dissertation, National Aerospace University, Kharkov, Ukraine.
Ivahnenko, A. G., and Krachkovskiy, Yu. P., 1987, Modeling Complex Systems According to Experimental Data, (Моделирование сложных систем по экспериментальным данным), Радио и связь, Moscow, Russian Federation, pp. 527.


Grahic Jump Location
Fig. 1

The effect of the relative tip clearance δ¯TC on the turbine efficiency ΔηT: ///—[9]; •—[10]

Grahic Jump Location
Fig. 2

The effect of the tip clearance change δTC = 1mm on the HPT efficiency for engines of different sizes

Grahic Jump Location
Fig. 3

The structure of a dynamic mathematical model of the GTE that considers the radial clearances

Grahic Jump Location
Fig. 4

Model of turbine rotor

Grahic Jump Location
Fig. 5

Design diagram to calculate the turbine rotor displacements

Grahic Jump Location
Fig. 6

Transient performance of two CPs on a disk surface

Grahic Jump Location
Fig. 7

Design model of the casing

Grahic Jump Location
Fig. 8

Design model of the turbine rotor blade

Grahic Jump Location
Fig. 9

Transient performance of the casing

Grahic Jump Location
Fig. 10

Transient performance of CP 1 (turbine rotor blade)

Grahic Jump Location
Fig. 11

Transient performance of CP 2 (turbine rotor blade)

Grahic Jump Location
Fig. 12

Cycle no. 1 “take-off without heating up”

Grahic Jump Location
Fig. 13

“Static” and the “dynamic” tip clearances in the turbine that correspond to cycle no. 1

Grahic Jump Location
Fig. 14

Cycle no. 2 “heating up and take-off”

Grahic Jump Location
Fig. 15

“Static” and the “dynamic” tip clearances in the turbine that correspond to cycle no. 2

Grahic Jump Location
Fig. 16

Cycle “take-off without heating up” with the proposed fuel supply program

Grahic Jump Location
Fig. 17

Thrust change with the proposed fuel supply program




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In