The performance map of a radial compressor operating with supercritical CO_{2} is computed by means of three-dimensional steady state Reynolds-averaged Navier–Stokes simulations. The geometry investigated is part of a 250 kW prototype which was tested at Sandia National Laboratories (SNL). An in-house fluid dynamic solver is coupled with a lookup table algorithm to evaluate the fluid properties. Tables are generated using a multiparameter equation of state, which ensures high accuracy in the fluid characterization. The compressor map is calculated considering three different rotational speeds (45 krpm, 50 krpm, and 55 krpm). For each speed-line, several mass flow rates are simulated. Numerical results are compared to experimental data from SNL to prove the potential of the methodology.