Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

NOx Emissions Modeling and Uncertainty From Exhaust-Gas-Diluted Flames

[+] Author and Article Information
Antonio C. A. Lipardi

Alternative Fuels Laboratory,
Department of Mechanical Engineering,
McGill University,
Montréal, QC H3A OC3, Canada
e-mail: antonio.lipardi@mail.mcgill.ca

Jeffrey M. Bergthorson

Associate Professor
Alternative Fuels Laboratory,
Department of Mechanical Engineering,
McGill University,
Montréal, QC H3A OC3, Canada
e-mail: jeff.bergthorson@mcgill.ca

Gilles Bourque

Siemens Canada,
Power Generation, Distributed Generation,
Montréal, QC H9P 1A5, Canada
e-mail: gilles.bourque@siemens.com

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 13, 2015; final manuscript received September 14, 2015; published online November 3, 2015. Editor: David Wisler.

J. Eng. Gas Turbines Power 138(5), 051506 (Nov 03, 2015) (10 pages) Paper No: GTP-15-1269; doi: 10.1115/1.4031603 History: Received July 13, 2015; Revised September 14, 2015

Oxides of nitrogen (NOx) are pollutants emitted by combustion processes during power generation and transportation that are subject to increasingly stringent regulations due to their impact on human health and the environment. One NOx reduction technology being investigated for gas-turbine engines is exhaust-gas recirculation (EGR), either through external exhaust-gas recycling or staged combustion. In this study, the effects of different percentages of EGR on NOx production will be investigated for methane–air and propane–air flames at a selected adiabatic flame temperature of 1800 K. The variability and uncertainty of the results obtained by the gri-mech 3.0 (GRI), San-Diego 2005 (SD), and the CSE thermochemical mechanisms are assessed. It was found that key parameters associated with postflame NO emissions can vary up to 192% for peak CH values, 35% for thermal NO production rate, and 81% for flame speed, depending on the mechanism used for the simulation. A linear uncertainty analysis, including both kinetic and thermodynamic parameters, demonstrates that simulated postflame nitric oxide levels have uncertainties on the order of ±50–60%. The high variability of model predictions, and their relatively high associated uncertainties, motivates future experiments of NOx formation in exhaust-gas-diluted flames under engine-relevant conditions to improve and validate combustion and NOx design tools.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


IEA, 2012, World Energy Outlook, International Energy Agency, Paris.
Skalska, K. , Miller, J. S. , and Ledakowicz, S. , 2010, “ Trends in NOx Abatement: A Review,” Sci. Total Environ., 408(19), pp. 3976–3989. [CrossRef] [PubMed]
Fenimore, C. , 1971, “ Formation of Nitric Oxide in Premixed Hydrocarbon Flames,” Proc. Combust. Symp., 13(1), pp. 373–380. [CrossRef]
Moskaleva, L. , and Lin, M. , 2000, “ The Spin-Conserved Reaction CH + N = H + NCN: A Major Pathway to Prompt NO Studied by Quantum/Statistical Theory Calculations and Kinetic Modeling of Rate Constant,” Proc. Combust. Inst., 28(2), pp. 2393–2401. [CrossRef]
Miller, J. A. , and Bowman, C. T. , 1989, “ Mechanism and Modeling of Nitrogen Chemistry in Combustion,” Prog. Energy Combust. Sci., 15(4), pp. 287–338. [CrossRef]
Guethe, F. , de la Cruz García, M. , and Burdet, A. , 2009, “ Flue Gas Recirculation in Gas Turbine: Investigation of Combustion Reactivity and NOx Emission,” ASME Paper No. GT2009-59221.
Elkady, A. M. , Herbon, J. , Kalitan, D. M. , Leonard, G. , Akula, R. , Karim, H. , and Hadley, M. , 2012, “ Gas Turbine Emission Characteristics in Perfectly Premixed Combustion,” ASME J. Eng. Gas Turbines Power, 134(6), p. 061501. [CrossRef]
Scarinci, T. , Freeman, C. , and Day, I. , 2004, “ Passive Control of Combustion Instability in a Low Emissions Aeroderivative Gas Turbine,” ASME Paper No. GT2004-53767.
Lörstad, D. , Lindholm, A. , Pettersson, J. , Björkman, M. , and Hultmark, I. , 2013, “ Siemens SGT-800 Industrial Gas Turbine Enhanced to 50 MW: Combustor Design Modifications, Validation and Operation Experience,” ASME Paper No. GT2013-95478.
Barenblatt, G. I. , and Sunyaev, R. A. , eds., 1992. “ The Oxidation of Nitrogen in Combustion and Explosions,” Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynamics, Princeton University Press, Princeton, NJ.
Bozzelli, J. W. , and Dean, A. M. , 1995, “ O+ NNH: A Possible New Route for NOx Formation in Flames,” Int. J. Chem. Kinet., 27(11), pp. 1097–1109. [CrossRef]
Nicol, D. G. , Steele, R. C. , Marinov, N. M. , and Malte, P. C. , 1995, “ The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion,” ASME J. Eng. Gas Turbines Power, 117(1), pp. 100–111. [CrossRef]
Sutton, J. A. , and Fleming, J. W. , 2008, “ Towards Accurate Kinetic Modeling of Prompt NO Formation in Hydrocarbon Flames Via the NCN Pathway,” Combust. Flame, 154(3), pp. 630–636. [CrossRef]
Gokulakrishnan, P. , Fuller, C. C. , Klassen, M. S. , Joklik, R. G. , Kochar, Y. N. , Vaden, S. N. , Lieuwen, T. C. , and Seitzman, J. M. , 2014, “ Experiments and Modeling of Propane Combustion With Vitiation,” Combust. Flame, 161(8), pp. 2038–2053. [CrossRef]
Lefebvre, A. H. , and Ballal, D. R. , 2010, Gas Turbine Combustion, 4th ed., CRC Press, Boca Raton, FL.
Amato, A. , Seitzman, J. , and Lieuwen, T. , 2013, “ Emissions From Oxyfueled or High-Exhaust Gas Recirculation Turbines,” Gas Turbine Emissions, T. C. Lieuwen and V. Yang , eds., Cambridge University Press, New York.
Smith, G. , Golden, D. , Frenklach, M. , Moriarty, N. , Eiteneer, B. , Goldenberg, M. , Bowman, C. , Hanson, R. , Song, S. , Gardiner, W. , Lissianski, V. , and Qin, Z. , “ GRI-Mech 3.0,” Gas Research Institute, Chicago, http://www.me.berkeley.edu/gri_mech/
Fackler, K. B. , Karalus, M. F. , Novosselov, I. V. , Kramlich, J. C. , and Malte, P. C. , 2011, “ Experimental and Numerical Study of NOx Formation From the Lean Premixed Combustion of CH4 Mixed With CO2 and N2,” ASME J. Eng. Gas Turbines Power, 133(12), p. 121502. [CrossRef]
Frenklach, M. , Wang, H. , and Rabinowitz, M. J. , 1992, “ Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method Combustion of Methane,” Prog. Energy Combust. Sci., 18(1), pp. 47–73. [CrossRef]
Watson, G. M. G. , Munzar, J. D. , and Bergthorson, J. M. , 2013, “ Diagnostics and Modeling of Stagnation Flames for the Validation of Thermochemical Combustion Models for NOx Predictions,” Energy Fuels, 27(11), pp. 7031–7043. [CrossRef]
Sheen, D. A. , and Tsang, W. , 2014, “ A Comparison of Literature Models for the Oxidation of Normal Heptane,” Combust. Flame, 161(8), pp. 1984–1992. [CrossRef]
Watson, G. M. G. , Munzar, J. D. , and Bergthorson, J. M. , 2014, “ NO Formation in Model Syngas and Biogas Blends,” Fuel, 124(1), pp. 113–124. [CrossRef]
Turányi, T. , Zalotai, L. , Dóbé, S. , and Bérces, T. , 2002, “ Effect of the Uncertainty of Kinetic and Thermodynamic Data on Methane Flame Simulation Results,” Phys. Chem. Chem. Phys., 4(12), pp. 2568–2578. [CrossRef]
Tomlin, A. S. , 2013, “ The Role of Sensitivity and Uncertainty Analysis in Combustion Modelling,” Proc. Combust. Inst., 34(1), pp. 159–176. [CrossRef]
Zsély, I. G. , Zádor, J. , and Turányi, T. , 2008, “ Uncertainty Analysis of NO Production During Methane Combustion,” Int. J. Chem. Kinet., 40(11), pp. 754–768. [CrossRef]
Hughes, K. , Tomlin, A. , Hampartsoumian, E. , Nimmo, W. , Zsély, I. G. , Ujvári, M. , Turanyi, T. , Clague, A. , and Pilling, M. , 2001, “ An Investigation of Important Gas-Phase Reactions of Nitrogenous Species From the Simulation of Experimental Measurements in Combustion Systems,” Combust. Flame, 124(4), pp. 573–589. [CrossRef]
UC San Diego Combustion Research Group, 2005, “ Chemical–Kinetic Mechanisms for Combustion Applications,” University of California–San Diego, La Jolla, CA, http://combustion.ucsd.edu
Versailles, P. , Watson, G. M. G. , Lipardi, A. C. A. , and Bergthorson, J. M. , 2015, “ Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1–C4 alkanes,” (submitted).
Watson, G. M. G. , Versailles, P. , and Bergthorson, J. M. , 2015, “ NO Formation in Premixed Flames of C1 to C3 Alkanes and Alcohols,” (submitted).
Petrova, M. V. , and Williams, F. A. , 2006, “ A Small Detailed Chemical-Kinetic Mechanism for Hydrocarbon Combustion,” Combust. Flame, 144(3), pp. 526–544. [CrossRef]
Goodwin, D. , 2003, “ An Open-Source, Extensible Software Suite for CVD Process Simulation,” Chemical Vapor Deposition XVI and EUROCVD 14: Proceedings of the International Symposium, Electrochemical Society, Pennington, NJ, pp. 2003–2008.
Reaction Design, 2013, Chemkin-Pro Release 15131, Reaction Design, San Diego, CA.
Boyce, M. P. , 2012, Gas Turbine Engineering Handbook, 4th ed., Elsevier, Oxford, UK.
Zsély, I. G. , Zádor, J. , and Turányi, T. , 2005, “ Uncertainty Analysis of Updated Hydrogen and Carbon Monoxide Oxidation Mechanisms,” Proc. Combust. Inst., 30(1), pp. 1273–1281. [CrossRef]
Zádor, J. , Zsély, I. G. , Turányi, T. , Ratto, M. , Tarantola, S. , and Saltelli, A. , 2005, “ Local and Global Uncertainty Analyses of a Methane Flame Model,” J. Phys. Chem. A, 109(43), pp. 9795–9807. [CrossRef] [PubMed]
Zádor, J. , Zsély, I. , and Turányi, T. , 2006, “ Local and Global Uncertainty Analysis of Complex Chemical Kinetic Systems,” Reliab. Eng. Syst. Saf., 91(10), pp. 1232–1240. [CrossRef]
Baulch, D. L. , Bowman, C. T. , Cobos, C. J. , Cox, R. , Just, T. , Kerr, J. , Pilling, M. J. , Stocker, D. , Troe, J. , Tsang, W. , Walker, R. W. , and Warnatz, J. , 2005, “ Evaluated Kinetic Data for Combustion Modeling: Supplement II,” J. Phys. Chem. Ref. Data, 34(3), pp. 757–1397. [CrossRef]
Sheen, D. A. , You, X. , Wang, H. , and Løvås, T. , 2009, “ Spectral Uncertainty Quantification, Propagation and Optimization of a Detailed Kinetic Model for Ethylene Combustion,” Proc. Combust. Inst., 32(1), pp. 535–542. [CrossRef]
Ruscic, B. , 2013, “ Active Thermochemical Tables (ATcT) Values Based on ver. 1.112 of the Thermochemical Network,” Argonne National Laboratory, Argonne, IL, http://atct.anl.gov
Konnov, A. A. , 2008, “ Remaining Uncertainties in the Kinetic Mechanism of Hydrogen Combustion,” Combust. Flame, 152(4), pp. 507–528. [CrossRef]
Tsang, W. , and Hampson, R. , 1986, “ Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds,” J. Phys. Chem. Ref. Data, 15(3), pp. 1087–1279. [CrossRef]
Shimizu, K. , Hibi, A. , Koshi, M. , Morii, Y. , and Tsuboi, N. , 2011, “ Updated Kinetic Mechanism for High-Pressure Hydrogen Combustion,” J. Propul. Power, 27(2), pp. 383–395. [CrossRef]
Burcat, A. , and Ruscic, B. , 2005, “ Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion With Updates From Active Thermochemical Tables,” Argonne National Laboratory, Argonne, IL.
Tabor, D. P. , Harding, M. E. , Ichino, T. , and Stanton, J. F. , 2012, “ High-Accuracy Extrapolated Ab Initio Thermochemistry of the Vinyl, Allyl, and Vinoxy Radicals,” J. Phys. Chem. A, 116(29), pp. 7668–7676. [CrossRef] [PubMed]
Tsang, W. , 1996, “ Heats of Formation of Organic Free Radicals by Kinetic Methods,” Energetics of Organic Free Radicals, J. A. Martinho Simões , J. Liebman , and A. Greenberg , eds., Chapman and Hall, New York.
Rodgers, A. S. , and Smith, G. P. , 1996, “ Pressure and Temperature Dependence of the Reactions of CH With N2,” Chem. Phys. Lett., 253(3), pp. 313–321. [CrossRef]
Lide, W. , and Haynes, D. , eds., 2009, CRC Handbook of Chemistry and Physics, 90th ed., CRC Press, Boca Raton, FL.
Gokulakrishnan, P. , Fuller, C. , Joklik, R. , and Klassen, M. , 2012, “ Chemical Kinetic Modeling of Ignition and Emissions From Natural Gas and LNG Fueled Gas Turbines,” ASME Paper No. GT2012-69902.
Sutton, J. A. , Williams, B. A. , and Fleming, J. W. , 2012, “ Investigation of NCN and Prompt-NO Formation in Low-Pressure C1–C4 Alkane Flames,” Combust. Flame, 159(2), pp. 562–576. [CrossRef]
Galmiche, B. , Halter, F. , Foucher, F. , and Dagaut, P. , 2011, “ Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames,” Energy Fuels, 25(3), pp. 948–954. [CrossRef]
Schofield, K. , 2012, “ Large Scale Chemical Kinetic Models of Fossil Fuel Combustion: Adequate as Engineering Models—No More, No Less,” Energy Fuels, 26(9), pp. 5468–5480. [CrossRef]


Grahic Jump Location
Fig. 1

Equilibrium solver diagram

Grahic Jump Location
Fig. 2

Equivalence ratio as a function of EGR dilution producing a constant flame temperature of 1800 K

Grahic Jump Location
Fig. 3

NO profile as a function of time from the flame front for: GRI (top), SD (middle), and CSE (bottom) with varying EGR dilution for CH4 oxidation at a constant flame temperature of 1800 K

Grahic Jump Location
Fig. 4

NO profile as a function of time from the flame front for the EGR dilution cases: baseline (top), midlevel (middle), and max-level (bottom) for CH4 oxidation at a constant flame temperature of 1800 K

Grahic Jump Location
Fig. 5

NO profile as a function of time from the flame front for the EGR dilution cases: baseline (top), midlevel (middle), and max-level (bottom) for C3H8 oxidation at a constant flame temperature of 1800 K (same legend as in Fig. 4)

Grahic Jump Location
Fig. 6

NO profile (with uncertainty area) as a function of time from the flame front for the CH4 baseline case assessed for GRI (top), SD (middle), and CSE (bottom)

Grahic Jump Location
Fig. 7

Postflame NO normalized sensitivities relative to the kinetic (top) and thermodynamic (bottom) parameters taken at 8 ms downstream of the flame location

Grahic Jump Location
Fig. 8

Highest kinetic (top)/thermodynamic (bottom) contributors to postflame NO uncertainty taken at 8 ms downstream of the flame location (same legend as in Fig. 7)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In