0
Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

Fundamental Combustion Characteristics of Lean and Stoichiometric Hydrogen Laminar Premixed Flames Diluted With Nitrogen or Carbon Dioxide

[+] Author and Article Information
Hong-Meng Li, Zuo-Yu Sun, Zi-Hang Zhou, Yuan Li, Ye Yuan

School of Mechanical, Electronic and
Control Engineering,
Beijing Jiaotong University,
Beijing 100044, China

Guo-Xiu Li

School of Mechanical, Electronic and
Control Engineering,
Beijing Jiaotong University,
Beijing 100044, China
e-mail: Li_GuoXiu@yahoo.com

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 8, 2015; final manuscript received October 22, 2015; published online May 24, 2016. Assoc. Editor: Song-Charng Kong.

J. Eng. Gas Turbines Power 138(11), 111501 (May 24, 2016) (9 pages) Paper No: GTP-15-1241; doi: 10.1115/1.4032315 History: Received July 08, 2015; Revised October 22, 2015

In this work, the laminar combustion characteristics of H2/N2/air (H2/CO2/air) were systematically investigated under different hydrogen ratios (40–100%) and equivalence ratios (0.4–1.0) in a closed combustion vessel using the spherical expanding flame method associated with Schlieren technology. The unstretched laminar burning velocities were compared with data from previous study, and the result indicates that excellent agreements are obtained. Numerical simulations were also conducted using GRI3.0 and USC II mechanisms to compare with the present experimental results. The Markstein length for H2/inert gas can be decreased by decreasing the equivalence ratio and hydrogen ratio. The results indicate that the H2/inert gas premixed flames tend to be more unstable with the decrease of equivalence ratio and hydrogen ratio. For H2/N2 mixture, the suppression effect on laminar burning velocity is caused by modified specific heat of mixtures and decreased heat release, which result in a decreased flame temperature. For H2/CO2 mixture, the carbon dioxide has stronger dilution effect than nitrogen in reducing laminar burning velocity owing to both thermal effect and chemical effect.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Plass, H. J., Jr. , Barbir, F. , Miller, H. P. , and Veziroglu, T. N. , 1990, “ Economics of Hydrogen as a Fuel for Surface Transportation,” Int. J. Hydrogen Energy, 15(9), pp. 663–668. [CrossRef]
Sun, B. G. , Tian, H. Y. , and Liu, F. S. , 2014, “ The Distinctive Characteristics of Combustion Duration in Hydrogen Internal Combustion Engine,” Int. J. Hydrogen Energy, 39(26), pp. 14472–14478. [CrossRef]
Zhang, B. , Ji, C. W. , and Wang, S. F. , 2015, “ Combustion Analysis and Emissions Characteristics of a Hydrogen-Blended Methanol Engine at Various Spark Timings,” Int. J. Hydrogen Energy, 40(13), pp. 4707–4716. [CrossRef]
Yang, Z. Z. , Wang, L. , He, M. , and Cao, Y. D. , 2012, “ Research on Optimal Control to Resolve the Contradictions Between Restricting Abnormal Combustion and Improving Power Output in Hydrogen Fueled Engines,” Int. J. Hydrogen Energy, 37(1), pp. 774–782. [CrossRef]
Sun, Z. Y. , Liu, F. S. , Bao, X. C. , and Liu, X. H. , 2012, “ Research on Cellular Instabilities in Outwardly Propagating Hydrogen–Air Flames,” Int. J. Hydrogen Energy, 37(9), pp. 7889–7899. [CrossRef]
Krejci, M. C. , Mathieu, O. , Vissotski, A. J. , Ravi, S. , Sikes, T. G. , and Petersen, E. L. , 2013, “ Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends,” ASME J. Eng. Gas Turbines Power, 135(2), p. 021503. [CrossRef]
Subramanian, V. , Mallikarjuna, J. M. , and Ramesh, A. , 2007, “ Intake Charge Dilution Effects on Control of Nitric Oxide Emission in a Hydrogen Fueled SI Engine,” Int. J. Hydrogen Energy, 32(12), pp. 2043–2056. [CrossRef]
Holborn, P. G. , Battersby, P. , Ingram, J. M. , Averill, A. F. , and Nolan, P. F. , 2013, “ Estimating the Effect of Water Fog and Nitrogen Dilution Upon the Burning Velocity of Hydrogen Deflagrations From Experimental Test Data,” Int. J. Hydrogen Energy, 38(16), pp. 6882–6895. [CrossRef]
Ibrahim, M. M. , and Ramesh, A. , 2014, “ Investigations on the Effects of Intake Temperature and Charge Dilution in Hydrogen Fueled HCCI Engine,” Int. J. Hydrogen Energy, 39(26), pp. 14097–14108. [CrossRef]
Donohoe, N. , Heufer, K. A. , Aul, C. J. , Petersen, E. L. , Bourque, G. , Gordon, R. , and Curran, H. J. , 2015, “ Influence of Steam Dilution on the Ignition of Hydrogen, Syngas and Natural Gas Blends at Elevated Pressures,” Combust. Flame, 162(4), pp. 1126–1135. [CrossRef]
Kwon, S. , Tseng, L. , and Faeth, G. , 1992, “ Laminar Burning Velocities and Transition to Unstable Flames in H2/O2/N2 and C3H8/O2/N2 Mixtures,” Combust. Flame, 90(3–4), pp. 230–246. [CrossRef]
Aung, K. T. , Hassan, M. I. , and Faeth, G. M. , 1998, “ Effects of Pressure and Nitrogen Dilution on Flame/Stretch Interactions of Laminar Premixed H2/O2/N2 Flames,” Combust. Flame, 112(1–2), pp. 1–15. [CrossRef]
Sohn, C. H. , 2002, “ Unsteady Analysis of Acoustic Pressure Response in N2 Diluted H2 and Air Diffusion Flames,” Combust. Flame, 128(1–2), pp. 110–120.
Liu, F. , Guo, H. , and Smallwood, G. , 2003, “ The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames,” Combust. Flame, 133(4), pp. 495–497. [CrossRef]
Park, J. , Kim, S. C. , Keel, S. I. , Noh, D. S. , Oh, C. B. , and Chung, D. , 2004, “ Effect of Steam Addition on Flame Structure and NO Formation in H2–O2–N2 Diffusion Flame,” Int. J. Energy Res., 28(12), pp. 1075–1088. [CrossRef]
deFerrieres, S. , el Bakali, A. , Lefort, B. , Montero, M. , and Pauwels, J. F. , 2008, “ Experimental and Numerical Investigation of Low-Pressure Laminar Premixed Synthetic Natural Gas/O2/N2 and Natural Gas/H2/O2/N2 Flames,” Combust. Flame, 154(3), pp. 601–623. [CrossRef]
Korobeinichev, O. P. , Shmakov, A. G. , Rybitskaya, I. V. , Bol'shova, T. A. , Chernov, A. A. , Knyaz'kov, D. A. , and Konnov, A. A. , 2009, “ Kinetics and Mechanism of Chemical Reactions in the H2/O2/N2 Flame at Atmospheric Pressure,” Kinet. Catal., 50(2), pp. 156–161. [CrossRef]
Tang, C. L. , Huang, Z. H. , Jin, C. , He, J. J. , Wang, J. H. , Wang, X. B. , and Miao, H. Y. , 2009, “ Explosion Characteristics of Hydrogen–Nitrogen–Air Mixtures at Elevated Pressures and Temperatures,” Int. J. Hydrogen Energy, 34(1), pp. 554–561. [CrossRef]
Ghermay, Y. , Mantzaras, J. , Bombach, R. , and Boulouchos, K. , 2011, “ Homogeneous Combustion of Fuel-Lean H2/O2/N2 Mixtures Over Platinum at Elevated Pressures and Preheats,” Combust. Flame, 158(8), pp. 1491–1506. [CrossRef]
Yu, J. F. , Yu, R. , and Bai, X. S. , 2013, “ Onset of Cellular Instability in Adiabatic H2/O2/N2 Premixed Flames Anchored to a Flat-Flame Heat-Flux Burner,” Int. J. Hydrogen Energy, 38(34), pp. 14866–14878. [CrossRef]
Pans, M. A. , Abad, A. , de Diego, L. F. , García-Labiano, F. , Gayán, P. , and Adánez, J. , 2013, “ Optimization of H2 Production With CO2 Capture by Steam Reforming of Methane Integrated With a Chemical-Looping Combustion System,” Int. J. Hydrogen Energy, 38(27), pp. 11878–11892. [CrossRef]
Zhuang, G. L. , Tseng, H. H. , and Wey, M. Y. , 2014, “ Preparation of PPO–Silica Mixed Matrix Membranes by In-Situ Sol–Gel Method for H2/CO2 Separation,” Int. J. Hydrogen Energy, 39(30), pp. 17178–17190. [CrossRef]
Natarajan, J. , Lieuwen, T. , and Seitzman, J. , 2007, “ Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure,” Combust. Flame, 151(1–2), pp. 104–119. [CrossRef]
Shy, S. S. , Chen, Y. C. , Yang, C. H. , Liu, C. C. , and Huang, C. M. , 2008, “ Effects of H2 or CO2 Addition, Equivalence Ratio, and Turbulent Straining on Turbulent Burning Velocities for Lean Premixed Methane Combustion,” Combust. Flame, 153(4), pp. 510–524. [CrossRef]
Fandino, O. , Martin Trusler, J. P. , and Vega-Maza, D. , 2015, “ Phase Behavior of (CO2+H2) and (CO2+N2) at Temperatures Between (218.15 and 303.15) K at Pressures Up to 15 MPa,” Int. J. Greenhouse Gas Control, 36, pp. 78–92. [CrossRef]
Nakahara, M. , Abe, F. , Tokunaga, K. , and Ishihara, A. , 2015, “ Effect of Dilution Gas on Burning Velocity of Hydrogen-Premixed Meso-Scale Spherical Laminar Flames,” Proc. Combust. Inst., 35(1), pp. 639–646. [CrossRef]
Cheng, Y. , Tang, C. L. , and Huang, Z. H. , 2015, “ Kinetic Analysis of H2 Addition Effect on the Laminar Flame Parameters of the C1–C4 n-Alkane–Air Mixtures: From One Step Overall Assumption to Detailed Reaction Mechanism,” Int. J. Hydrogen Energy, 40(1), pp. 703–718. [CrossRef]
Li, H. M. , Li, G. X. , Sun, Z. Y. , Zhai, Y. , and Zhou, Z. H. , 2014, “ Measurement of the Laminar Burning Velocities and Markstein Lengths of Lean and Stoichiometric Syngas Premixed Flames Under Various Hydrogen Fractions,” Int. J. Hydrogen Energy, 39(30), pp. 17371–17380. [CrossRef]
Miao, H. Y. , Jiao, Q. , Huang, Z. H. , and Jiang, D. M. , 2009, “ Measurement of Laminar Burning Velocities and Markstein Lengths of Diluted Hydrogen-Enriched Natural Gas,” Int. J. Hydrogen Energy, 34(1), pp. 507–518. [CrossRef]
Miao, J. , Leung, C. W. , Huang, Z. H. , Cheung, C. S. , Yu, H. B. , and Xie, Y. L. , 2014, “ Laminar Burning Velocities, Markstein Lengths, and Flame Thickness of Liquefied Petroleum Gas With Hydrogen Enrichment,” Int. J. Hydrogen Energy, 39(24), pp. 13020–13030. [CrossRef]
Li, H. , Li, G. , Sun, Z. , Yu, Y. , Zhai, Y. , and Zhou, Z. , 2014, “ Experimental Investigation on Laminar Burning Velocities and Flame Intrinsic Instabilities of Lean and Stoichiometric H2/CO/Air Mixtures at Reduced, Normal and Elevated Pressures,” Fuel, 135, pp. 279–291. [CrossRef]
Bradley, D. , Hicks, R. A. , Lawes, M. , Sheppard, C. G. W. , and Woolley, R. , 1998, “ The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb,” Combust. Flame, 115(1–2), pp. 126–144. [CrossRef]
Huang, Z. , Zhang, Y. , Zeng, K. , Liu, B. , Wang, Q. , and Jiang, D. , 2006, “ Measurements of Laminar Burning Velocities for Natural Gas–Hydrogen–Air Mixtures,” Combust. Flame, 146(1–2), pp. 302–311. [CrossRef]
Karim, G. A. , 2011, “ The Combustion of Bio-Gases and Low Heating Value Gaseous Fuel Mixtures,” Int. J. Green Energy, 8(3), pp. 372–382. [CrossRef]
Ha, J. S. , Moon, C. W. , Park, J. , Kim, J. S. , Kim, T. H. , Park, J. H. , Yun, J. H. , and Keel, S. I. , 2010, “ A Study on Flame Interaction Between Methane/Air and Nitrogen-Diluted Hydrogen–Air Premixed Flames,” Int. J. Hydrogen Energy, 35(13), pp. 6992–7001. [CrossRef]
Kim, J. S. , Park, J. , Bae, D. S. , Vu, T. M. , Ha, J. S. , and Kim, T. K. , 2010, “ A Study on Methane–Air Premixed Flames Interacting With Syngas–Air Premixed Flames,” Int. J. Hydrogen Energy, 35(3), pp. 1390–1400. [CrossRef]
Cheng, T. S. , Chang, Y. C. , Chao, Y. C. , et al. ., 2011, “ An Experimental and Numerical Study on Characteristics of Laminar Premixed H2/CO/CH4,” Int. J. Hydrogen Energy, 36(20), pp. 13207–13217. [CrossRef]
Pareja, J. , Burbano, H. J. , and Ogami, Y. , 2010, “ Measurements of the Laminar Burning Velocity of Hydrogen–Air Premixed Flames,” Int. J. Hydrogen Energy, 35(4), pp. 1812–1818. [CrossRef]
Bouvet, N. , Chauveau, C. , Gokalp, I. , Lee, S. Y. , and Santoro, R. J. , 2011, “ Characterization of Syngas Laminar Flames Using the Bunsen Burner Configuration,” Int. J. Hydrogen Energy, 36(1), pp. 992–1005. [CrossRef]
Yepes, H. A. , and Amell, A. A. , 2013, “ Laminar Burning Velocity With Oxygen-Enriched Air of Syngas Produced From Biomass Gasification,” Int. J. Hydrogen Energy, 38(18), pp. 7519–7527. [CrossRef]
Law, C. K. , Jomaas, G. , and Bechtold, J. K. , 2005, “ Cellular Instabilities of Expanding Hydrogen/Propane Spherical Flames at Elevated Pressures: Theory and Experiment,” Proc. Combust. Inst., 30(1), pp. 159–167. [CrossRef]
Bradley, D. , Lawes, M. , and Mansour, M. S. , 2009, “ Explosion Bomb Measurements of Ethanol–Air Laminar Gaseous Flame Characteristics at Pressures Up To 1.4 MPa,” Combust. Flame, 156(7), pp. 1462–1470. [CrossRef]
Kuznetsov, M. , Kobelt, S. , Grune, J. , and Jordan, T. , 2012, “ Flammability Limits and Laminar Flame Speed of Hydrogen–Air Mixtures at Sub-Atmospheric Pressures,” Int. J. Hydrogen Energy, 37(22), pp. 17580–17588. [CrossRef]
Pugh, D. G. , O'Doherty, T. , Griffiths, A. J. , Bowen, P. J. , Crayford, A. P. , and Marsh, R. , 2013, “ Sensitivity to Change in Laminar Burning Velocity and Markstein Length Resulting From Variable Hydrogen Fraction in Blast Furnace Gas for Changing Ambient Conditions,” Int. J. Hydrogen Energy, 38(8), pp. 3459–3470. [CrossRef]
Wang, J. , Huang, Z. , Kobayashi, H. , and Ogami, Y. , 2012, “ Laminar Burning Velocities and Flame Characteristics of CO–H2–CO2–O2 Mixtures,” Int. J. Hydrogen Energy, 37(24), pp. 19158–19167. [CrossRef]
Bradley, D. , Cresswell, T. M. , and Puttock, J. S. , 2001, “ Flame Acceleration Due to Flame-Induced Instabilities in Large-Scale Explosions,” Combust. Flame, 124(4), pp. 551–559. [CrossRef]
Kelley, A. P. , and Law, C. K. , 2009, “ Nonlinear Effects in the Extraction of Laminar Flame Speeds From Expanding Spherical Flames,” Combust. Flame, 156(9), pp. 1844–1851. [CrossRef]
Chen, Z. , 2015, “ On the Accuracy of Laminar Flame Speeds Measured From Outwardly Propagation Spherical Flames: Methane/Air at Normal Temperature and Pressure,” Combust. Flame, 162(6), pp. 2442–2453. [CrossRef]
Galmiche, B. , Halter, F. , and Foucher, F. , 2012, “ Effects of High Pressure, High Temperature and Dilution on Laminar Burning Velocities and Markstein Lengths of Iso-Octane/Air Mixtures,” Combust. Flame, 159(11), pp. 3286–3299. [CrossRef]
Kee, R. J. , Grcar, J. F. , Smooke, M. D. , and Miller, J. A. , 1985, “ PREMIX: A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND 85-8240.
Smith, G. P. , Golden, D. M. , Frenklach, M. , Moriarty, N. W. , Eiteneer, B. , and Goldenberg, M. , “ GRI3.0 Mesh,” Gas Research Institute, Chicago, IL, http://www.me.berkeley.edu/gri_mech/
Wang, H. , You, X. Q. , Joshi, A. V. , Davis, S. G. , Laskin, A. , Egolfopoulos, F. N. , and Law, C. K. , 2007, “ USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds,” Combustion Kinetics Laboratory, University of Southern California, Los Angeles, CA, http://ignis.usc.edu/USC_Mech_II.htm
Dowdy, D. R. , Smith, D. B. , Taylor, S. C. , and Williams, A. , 1991, “ The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures,” Proc. Combust. Inst., 23(1), pp. 325–332. [CrossRef]
Egolfopoulos, F. N. , and Law, C. K. , 1991, “ An Experimental and Computational Study of the Burning Rates of Ultra-Lean to Moderately-Rich H2/O2/N2 Laminar Flames With Pressure Variations,” Proc. Combust. Inst., 23(1), pp. 333–340. [CrossRef]
Aung, K. T. , Hassan, M. I. , and Faeth, G. M. , 1997, “ Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure,” Combust. Flame, 109(1–2), pp. 1–24. [CrossRef]
Tse, S. D. , Zhu, D. L. , and Law, C. K. , 2000, “ Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures Up to 60 Atmospheres,” Proc. Combust. Inst., 28(2), pp. 1793–1800. [CrossRef]
Kwon, O. C. , and Faeth, G. M. , 2001, “ Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions,” Combust. Flame, 124(4), pp. 590–610. [CrossRef]
Lamoureux, N. , Djebaili-Chaumeix, N. , and Paillard, C. E. , 2003, “ Laminar Flame Velocity Determination for H2–Air–He–CO2 Mixtures Using the Spherical Bomb Method,” Exp. Therm. Fluid Sci., 27(4), pp. 385–393. [CrossRef]
Verhelst, S. , Woolley, R. , Lawes, M. , and Sierens, R. , 2005, “ Laminar and Unstable Burning Velocities and Markstein Lengths of Hydrogen–Air Mixtures at Engine-Like Conditions,” Proc. Combust. Inst., 30(1), pp. 209–216. [CrossRef]
Dahoe, A. E. , 2005, “ Laminar Burning Velocities of Hydrogen–Air Mixtures From Closed Vessel Gas Explosions,” J. Loss Prev. Process Ind., 18(3), pp. 152–166. [CrossRef]
Burke, M. P. , Chen, Z. , Ju, Y. , and Dryer, F. L. , 2009, “ Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames,” Combust. Flame, 156(4), pp. 771–779. [CrossRef]
Han, M. , Ai, Y. , Chen, Z. , and Kong, W. , 2015, “ Laminar Flame Speeds of H2/CO Dilution at Normal and Elevated Pressures and Temperatures,” Fuel, 148, pp. 32–38. [CrossRef]
Prathap, C. , Ray, A. , and Ravi, M. R. , 2008, “ Investigation of Nitrogen Dilution Effects on the Laminar Burning Velocity and Flame Stability of Syngas Fuel at Atmospheric Condition,” Combust. Flame, 155(1–2), pp. 145–160. [CrossRef]
Vancoillie, J. , Christensen, M. , Nilsson, E. J. K. , Verhelst, S. , and Konnov, A. A. , 2013, “ The Effect of Dilution With Nitrogen and Steam on the Laminar Burning Velocity of Methanol at Room and Elevated Temperatures,” Fuel, 105, pp. 732–738. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of the experimental rig employed in the present investigation

Grahic Jump Location
Fig. 2

Comparison of the laminar burning velocity of H2–air mixtures to the experimental datasets from literature

Grahic Jump Location
Fig. 3

Variation regulation of the global stretch rate of hydrogen laminar premixed flames: (a) with a H2 ratio of 80% in different equivalence ratios and (b) with different H2 ratios in an equivalence ratio of 0.6

Grahic Jump Location
Fig. 4

Nexus between the propagation speed and the global stretch rate of hydrogen laminar premixed flames: (a) with a H2 ratio of 50% in different equivalence ratios and (b) with different H2 ratios in an equivalence ratio of 0.5

Grahic Jump Location
Fig. 5

Nexus between the Markstein length an equivalence ratio with different H2 ratios: (a) diluted by N2 and (b) diluted by CO2

Grahic Jump Location
Fig. 6

The laminar burning velocity with different H2 ratios and different equivalence ratios: (a) diluted by N2 and (b) diluted by CO2

Grahic Jump Location
Fig. 7

Comparison of the experimental data with simulation results of H2/N2 premixed flames: (a) φ = 0.7, (b) φ = 0.8, (c) φ = 0.9, and (d) φ = 1.0

Grahic Jump Location
Fig. 8

Comparison of the experimental data with simulation results of H2/CO2 premixed flames: (a) φ = 0.7, (b) φ = 0.8, (c) φ = 0.9, and (d) φ = 1.0

Grahic Jump Location
Fig. 9

Adiabatic flame temperature and laminar burning velocity versus hydrogen ratio of H2/N2 mixture and H2/CO2 mixture at φ = 1.0

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In