Dostal,
V.
, 2004, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Wright,
S.
,
Radel,
R.
,
Vernon,
M.
,
Rochau,
G.
, and
Pichard,
P.
, 2010, “
Operation and Analysis of a Supercritical CO_{2} Brayton Cycle,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAN2010-0171.

Turchi,
C.
,
Ma,
Z.
, and
Wagner,
M.
, 2013, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems,” ASME J. Sol. Energy Eng.,
135(4), p. 041007.

[CrossRef]
Kus,
B.
, and
Neks,
P.
, 2013, “
Development of One-Dimensional Model for Initial Design and Evaluation of Oil-Free CO

_{2} Turbo-Compressor,” Int. J. Refrig.,
36(8), pp. 2079–2090.

[CrossRef]
Pecnik,
R.
,
Rinaldi,
E.
, and
Colonna,
P.
, 2012, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO

_{2},” ASME J. Eng. Gas Turbines Power,
134(12), p. 122301.

[CrossRef]
Kim,
S. G.
,
Lee,
J.
,
Ahn,
Y.
,
Lee,
J. I.
,
Addad,
Y.
, and
Ko,
B.
, 2014, “
CFD Investigation of a Centrifugal Compressor Derived From Pump Technology for Supercritical Carbon Dioxide as a Working Fluid,” J. Supercrit. Fluids,
86(0), pp. 160–171.

[CrossRef]
Rinaldi,
E.
,
Pecnik,
R.
, and
Colonna,
P.
, 2015, “
Computational Fluid Dynamic Simulation of a Supercritical CO

_{2} Compressor Performance Map,” ASME J. Eng. Gas Turbines Power,
137(7), p. 072602.

[CrossRef]
Dykas,
B.
,
Bruckner,
R.
,
DellaCorte,
C.
,
Edmonds,
B.
, and
Prahl,
J.
, 2008, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications,” ASME J. Eng. Gas Turbines Power,
131(1), p. 012301.

[CrossRef]
Aksoy,
S.
, and
Aksit,
M.
, 2015, “
A Fully Coupled 3D Thermo-Elastohydrodynamics Model for a Bump-Type Compliant Foil Journal Bearing,” Tribol. Int., Part A,
82, pp. 110–122.

[CrossRef]
Andres,
L.
, and
Diemer,
P.
, 2014, “
Prediction of Gas Thrust Foil Bearing Performance for Oil-Free Automotive Turbochargers,” ASME J. Eng. Gas Turbines Power,
137(3), p. 032502.

[CrossRef]
Heshmat,
H.
,
Walowit,
J.
, and
Pinkus,
O.
, 1983, “
Analysis of Gas Lubricated Compliant Thrust Bearings,” ASME J. Tribol.,
105(4), pp. 638–646.

Heshmat,
C.
,
Xu,
D.
, and
Heshmat,
H.
, 1999, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods,” ASME J. Tribol.,
122(1), pp. 199–204.

[CrossRef]
Reynolds,
O.
, 1886, “
On the Theory of Lubrication and its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil,” Philos. Trans. R. Soc. London,
177(0), pp. 157–234.

[CrossRef]
Ng,
C.
, and
Pan,
C.
, 1965, “
A Linearized Turbulent Lubrication Theory,” ASME J. Fluids Eng.,
87(3), pp. 675–682.

Constantinescu,
V.
, 1973, “
Basic Relationships in Turbulent Lubrication and Their Extension to Include Thermal Effects,” ASME J. Tribol.,
95(2), pp. 147–154.

Hirs,
G.
, 1973, “
A Bulk-Flow Theory for Turbulence in Lubricant Films,” ASME J. Tribol.,
95(2), pp. 137–145.

Conboy,
T.
, 2013, “
Real-Gas Effects in Foil Thrust Bearings Operating in the Turbulent Regime,” ASME J. Tribol.,
135(3), p. 031703.

[CrossRef]
Gollan,
R.
, and
Jacobs,
P.
, 2013, “
About the Formulation, Verification and Validation of the Hypersonic Flow Solver Eilmer,” Int. J. Numer. Methods Fluids,
73(1), pp. 19–57.

[CrossRef]
Dickman,
J.
, 2010, “
An Investigation of Gas Foil Thrust Bearing Performance and its Influence Factors,” MS thesis, Case Western Reserve University, Cleveland, OH.

Ventura,
C.
,
Sauret,
E.
,
Jacobs,
P.
,
Petrie-Repar,
P.
, and
der Laan,
P. V.
, 2010, “
Adaption and Use of a Compressible Flow Code for Turbomachinery Design,” 5th European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2010)), Lisbon, Portugal, June 14–17.

Qin,
K.
,
Jahn,
I.
, and
Jacobs,
P.
,
2014
, “
Validation of a Three-Dimensional CFD Analysis of Foil Bearings With Supercritical CO_{2},” 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, Dec. 8–11,
H. Chowdhury
and
F. Alam
, eds.,
RMIT University,
Melbourne, Australia, pp. 136.1–136.4.

Lemmon,
E.
,
Huber,
M.
, and
McLinden,
M.
, 2013, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP,” version 9.1, National Institute of Standards and Technology, Boulder, CO.

Brunetiere,
N.
,
Tournerie,
B.
, and
Frene,
J.
, 2002, “
Influence of Fluid Flow Regime on Performances of Non-Contacting Liquid Face Seals,” ASME J. Tribol.,
124(3), pp. 515–523.

[CrossRef]
Souchet,
D.
, 1991, “
Comportement thermohydrodynamique des butées á patins oscillants en régime laminaire et turbulent,” Ph.D. thesis,
University of Poitiers,
Poitiers, France.

Chan,
W.
,
Jacobs,
P.
, and
Mee,
D.
, 2011, “
Suitability of the

*k* –

*w* Turbulence Model for Scramjet Flowfield Simulations,” Int. J. Numer. Methods Fluids,
70(4), pp. 493–514.

[CrossRef]
Telbany,
M. E.
, and
Reynolds,
A.
, 1980, “
Velocity Distribution in Plane Turbulent Channel Flows,” J. Fluid Mech.,
100(01), pp. 1–29.

[CrossRef]
Telbany,
M. E.
, and
Reynolds,
A.
, 1981, “
Turbulence in Plane Channel Flows,” J. Fluid Mech.,
111, pp. 283–318.

[CrossRef]
White,
F.
, 2006, Viscous Fluid Flow,
McGraw-Hill,
New York.

Petrie-Repar,
P.
, 1997, “
Numerical Simulation of Diaphragm Rupture,” Ph.D. thesis, University of Queensland, Brisbane, Queenland, Australia.

Johnston,
I.
, 1999, “
Simulation of Flow Around Hyersonic Blunt-Nosed Vehicles for the Calibration of Air Data System,” Ph.D. thesis, University of Queensland, Brisbane, Queensland, Australia.

Liou,
M.
, and
Steffen,
C.
, 1993, “
A New Flux Splitting Scheme,” J. Comput. Phys.,
107(1), pp. 23–39.

[CrossRef]
Wada,
Y.
, and
Liou,
M.
, 1997, “
An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities,” J. Sci. Comput.,
18(3), pp. 633–657.

Macrossan,
M.
, 1989, “
The Equilibrium Flux Method for the Calculation of Flows With Non-Equilibrium Chemical Reactions,” J. Comput. Phys.,
80(1), pp. 204–231.

[CrossRef]
Ambrosi,
D.
, 1994, “
Full Potential and Euler Solutions for Transonic Unsteady Flow,” Aeronaut. J.,
98, pp. 340–348.

Grandy,
J.
, 1997, “
Efficient Computation of Volume of Hexahedral Cells,” Lawrence Livermore National Laboratory, Livermore, CA, Technical Report No. UCRL-ID-128886.

Iordanoff,
I.
, 1999, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design,” ASME J. Tribol.,
121(4), pp. 816–822.

[CrossRef]
Feng,
K.
, and
Kaneko,
S.
, 2010, “
Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite Element Shell Model,” ASME J. Tribol.,
132(2), p. 021706.

[CrossRef]
Gad,
A.
, and
Kaneko,
S.
, 2014, “
A New Structural Stiffness Model for Bump-Type Foil Bearings: Application to Generation II Gas Lubricated Foil Thrust Bearing,” ASME J. Tribol.,
136(4), p. 041701.

[CrossRef]
Andres,
L. S.
, and
Kim,
T.
, 2009, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models,” Tribol. Int.,
42(1), pp. 111–120.

[CrossRef]
Timoshenko,
S.
, and
Woinowsky-Krieger,
S.
, 1959, Theory of Plates and Shells,
McGraw-Hill,
New York.

Qin,
K.
, and
Jahn,
I.
, 2015, “
Structural Deformation of a Circular Thin Plate With Combinations of Fixed and Free Edges,” The University of Queensland, Queensland, Australia, Technical Report No. 2015/05.

ANSYS, 2014, ansys Mechanical User's Guide, 15.0 ed, Ansys Inc., Canonsburg, PA.

AGARD, 1982, “
Compendium of Unsteady Aerodynamic Measurements,” NATO Advisory Group for Aerospace Research and Development, Neuilly sur Seine, France, Technical Report No. AGARD-R-72.

Jahangirian,
A.
, and
Hadidoolabi,
M.
, 2005, “
Unstructured Moving Grids for Implicit Calculation of Unsteady Compressible Viscous Flows,” Int. J. Numer. Methods Fluids,
47(10), pp. 1107–1113.

[CrossRef]
Schlichting,
H.
, 1979, Boundary-Layer Theory,
McGraw-Hill,
New York.

Barakos,
G.
, and
Drikakis,
D.
, 1999, “
An Implicit Unfactored Method for Unsteady Turbulent Compressible Flows With Moving Boundaries,” Comput. Fluids,
28(8), pp. 899–922.

[CrossRef]
Span,
R.
, and
Wagner,
W.
, 1996, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple Point Temperature to 1100 K at Pressures up to 800 MPa,” J. Phys. Chem. Ref. Data,
25(6), pp. 1509–1596.

[CrossRef]
Bruckner,
R.
, 2004, “
Simulation and Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.

Pinkus,
O.
, and
Lund,
J.
, 1981, “
Centrifugal Effects in Thrust Bearings and Seals Under Laminar Conditions,” ASME J. Lubr. Technol.,
103(1), pp. 126–136.

Garratt,
J. E.
,
Hibberd,
S.
,
Cliffe,
K. A.
, and
Power,
H.
, 2012, “
Centrifugal Inertia Effects in High-Speed Hydrostatic Air Thrust Bearings,” J. Eng. Math.,
76(1), pp. 59–80.

[CrossRef]