Pfeiffer,
F.
, and
Hajek,
M.
, 1992, “
Stick-Slip Motion of Turbine Blade Dampers,” Philos. Trans. R. Soc. London, Ser. A,
338(1651), pp. 503–517.

[CrossRef]
Sextro,
W.
,
Popp,
K.
, and
Wolter,
I.
, 1997, “
Improved Reliability of Bladed Disks Due to Friction Dampers,” ASME Paper No. 97-GT-189.

Yang,
B.
, and
Menq,
C.
, 1998, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading: Part 1—Stick-Slip Contact Kinematics,” ASME J. Eng. Gas Turbines Power,
120(2), pp. 410–417.

[CrossRef]
Yang,
B.
, and
Menq,
C.
, 1998, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading: Part 2—Prediction of Forced Response and Experimental Verification,” ASME J. Eng. Gas Turbines Power,
120(2), pp. 418–423.

[CrossRef]
Csaba,
G.
, 1999, “
Modeling of a Microslip Friction Damper Subjected to Translation and Rotation,” ASME Paper No. 99-GT-149.

Sanliturk,
K.
,
Ewins,
D.
, and
Stanbridge,
A.
, 2001, “
Underplatform Dampers for Turbine Blades: Theoretical Modeling, Analysis, and Comparison With Experimental Data,” ASME J. Eng. Gas Turbines Power,
123(4), pp. 919–929.

[CrossRef]
Cigeroglu,
E.
,
An,
N.
, and
Menq,
C.-H.
, 2007, “
Wedge Damper Modeling and Forced Response Prediction of Frictionally Constrained Blades,” ASME Paper No. GT2007-27963.

Cigeroglu,
E.
,
An,
N.
, and
Menq,
C.-H.
, 2009, “
Forced Response Prediction of Constrained and Unconstrained Structures Coupled Through Frictional Contacts,” ASME J. Eng. Gas Turbines Power,
131(2), p. 022505.

[CrossRef]
Yang,
B.
,
Chen,
J.
, and
Menq,
C.
, 1999, “
Prediction of Resonant Response of Shrouded Blades With Three-Dimensional Shroud Constraint,” ASME J. Eng. Gas Turbines Power,
121(3), pp. 523–529.

[CrossRef]
Petrov,
E.
, and
Ewins,
D.
, 2003, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks,” ASME J. Turbomach.,
125(2), pp. 364–371.

[CrossRef]
Petrov,
E.
, 2004, “
A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks,” ASME J. Turbomach.,
126(1), pp. 175–183.

[CrossRef]
Cigeroglu,
E.
, and
Ozguven,
H. N.
, 2006, “
Nonlinear Vibration Analysis of Bladed Disks With Dry Friction Dampers,” J. Sound Vib.,
295(3–5), pp. 1028–1043.

[CrossRef]
Siewert,
C.
,
Panning,
L.
,
Wallaschek,
J.
, and
Richter,
C.
, 2010, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces,” ASME J. Eng. Gas Turbines Power,
132(8), p. 082501.

Niemotka,
M. A.
, and
Ziegert,
J. C.
, 1993, “
Optimal Design of Split Ring Dampers for Gas Turbine Engines,” ASME Paper No. 93-GT-116.

Laxalde,
D.
,
Thouverez,
F.
,
Sinou,
J.-J.
, and
Lombard,
J.-P.
, 2007, “
Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers,” Eur. J. Mech., A/Solids,
26(4), pp. 676–687.

[CrossRef]
Laxalde,
D.
,
Thouverez,
F.
, and
Lombard,
J.-P.
, 2010, “
Forced Response Analysis of Integrally Bladed Disks With Friction Ring Dampers,” ASME J. Vib. Acoust.,
132(1), p. 011013.

[CrossRef]
Laxalde,
D.
,
Salles,
L.
,
Blanc,
L.
, and
Thouverez,
F.
, 2008, “
Non-Linear Modal Analysis for Bladed Disks With Friction Contact Interfaces,” ASME Paper No. GT2008-50860.

Craig,
R. R.
, and
Kurdila,
A. J.
, 2006, Fundamentals of Structural Dynamics, 2nd ed.,
Wiley, Hoboken, NJ.

Ottarsson,
G.
,
Castanier,
M.
, and
Pierre,
C.
, 1994, “
A Reduced-Order Modeling Technique for Mistuned Bladed Disks,” AIAA Paper No. 94-1640-CP.

Castanier,
M. P.
,
Ottarsson,
G.
, and
Pierre,
C.
, 1997, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks,” ASME J. Vib. Acoust.,
119(3), pp. 439–447.

[CrossRef]
Lim,
S.-H.
,
Bladh,
R.
,
Castanier,
M.
, and
Pierre,
C.
, 2003, “
A Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration,” AIAA Paper No. 2003-1545.

Lim,
S.-H.
,
Bladh,
R.
,
Castanier,
M. P.
, and
Pierre,
C.
, 2007, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration,” AIAA J.,
45(9), pp. 2285–2298.

[CrossRef]
Lim,
S.-H.
,
Castanier,
M.
, and
Pierre,
C.
, 2004, “
Vibration Modeling of Bladed Disks Subject to Geometric Mistuning and Design Changes,” AIAA Paper No. 2004-1686.

Bladh,
R.
,
Castanier,
M. P.
, and
Pierre,
C.
, 1999, “
Reduced Order Modeling and Vibration Analysis of Mistuned Bladed Disk Assemblies With Shrouds,” ASME J. Eng. Gas Turbines Power,
121(3), pp. 515–522.

[CrossRef]
Bladh,
R.
,
Pierre,
C.
,
Castanier,
M. P.
, and
Kruse,
M. J.
, 2002, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling,” ASME J. Eng. Gas Turbines Power,
124(2), pp. 311–324.

[CrossRef]
Bladh,
R.
,
Castanier,
M. P.
, and
Pierre,
C.
, 2000, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models,” ASME J. Eng. Gas Turbines Power,
123(1), pp. 89–99.

[CrossRef]
Bladh,
R.
,
Castanier,
M. P.
, and
Pierre,
C.
, 2000, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part II: Application,” ASME J. Eng. Gas Turbines Power,
123(1), pp. 100–108.

[CrossRef]
Yang,
M.-T.
, and
Griffin,
J. H.
, 1999, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes,” ASME J. Eng. Gas Turbines Power,
123(4), pp. 893–900.

[CrossRef]
Feiner,
D. M.
, and
Griffin,
J. H.
, 2002, “
A Fundamental Model of Mistuning for a Single Family of Modes,” ASME J. Turbomach.,
124(4), pp. 597–605.

[CrossRef]
Vargiu,
P.
,
Firrone,
C.
,
Zucca,
S.
, and
Gola,
M.
, 2011, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks,” Int. J. Mech. Sci.,
53(8), pp. 639–646.

[CrossRef]
Fitzner,
C.
,
Epureanu,
B. I.
, and
Filippi,
S.
, 2014, “
Nodal Energy Weighted Transformation: A Mistuning Projection and Its Application to FLADE Turbines,” Mech. Syst. Signal Process.,
42(1–2), pp. 167–180.

[CrossRef]
Mbaye,
M.
,
Soize,
C.
, and
Ousty,
J.-P.
, 2010, “
A Reduced-Order Model of Detuned Cyclic Dynamical Systems With Geometric Modifications Using a Basis of Cyclic Modes,” ASME J. Eng. Gas Turbines Power,
132(11), p. 112502.

[CrossRef]
Madden,
A.
,
Epureanu,
B. I.
, and
Filippi,
S.
, 2012, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning,” AIAA J.,
50(2), pp. 366–374.

[CrossRef]
Griffin,
J.
, 1980, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils,” ASME J. Eng. Power,
102(2), pp. 329–333.

[CrossRef]
Ferri,
A.
, 1995, “
Friction Damping and Isolation Systems,” ASME J. Mech. Des.,
117B, pp. 196–206.

[CrossRef]
Menq,
C.-H.
, and
Griffin,
J.
, 1985, “
Comparison of Transient and Steady State Finite Element Analyses of the Forced Response of a Frictionally Damped Beam,” ASME J. Vib. Acoust. Stress Reliab. Des.,
107(1), pp. 19–25.

[CrossRef]
Cameron,
T.
,
Griffin,
J.
,
Kielb,
R.
, and
Hoosac,
T.
, 1990, “
Integrated Approach for Friction Damper Design,” ASME J. Vib. Acoust. Stress Reliab. Des.,
112(2), pp. 175–182.

[CrossRef]
Menq,
C.-H.
,
Bielak,
J.
, and
Griffin,
J.
, 1986, “
Influence of Microslip on Vibratory Response, Part I: A New Microslip Model,” J. Sound Vib.,
107(2), pp. 279–293.

[CrossRef]
Menq,
C.-H.
,
Griffin,
J.
, and
Bielak,
J.
, 1986, “
Influence of Microslip on Vibratory Response, Part II: A Comparison With Experimental Results,” J. Sound Vib.,
107(2), pp. 295–307.

[CrossRef]
Menq,
C.-H.
,
Cigeroglu,
E.
, and
Lu,
W.
, 2006, “
One-Dimensional Dynamic Microslip Friction Model,” J. Sound Vib.,
292(3–5), pp. 881–898.

Yang,
B.
,
Chu,
M.
, and
Menq,
C.
, 1998, “
Stick-Slip-Separation Analysis and Non-Linear Stiffness and Damping Characterization of Friction Contacts Having Variable Normal Load,” J. Sound Vib.,
210(4), pp. 461–481.

[CrossRef]
Cigeroglu,
E.
,
An,
N.
, and
Menq,
C.-H.
, 2007, “
A Microslip Friction Model With Normal Load Variation Induced by Normal Motion,” Nonlinear Dyn.,
50(3), pp. 609–626.

[CrossRef]
Sanliturk,
K.
, and
Ewins,
D.
, 1996, “
Modelling Two-Dimensional Friction Contact and Its Application Using Harmonic Balance Method,” J. Sound Vib.,
193(2), pp. 511–523.

[CrossRef]
Menq,
C.
, and
Yang,
B.
, 1998, “
Non-Linear Spring Resistance and Friction Damping of Frictional Constraint Having Two-Dimensional Motion,” J. Sound Vib.,
217(1), pp. 127–143.

[CrossRef]
Yang,
B.
, and
Menq,
C.
, 1998, “
Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint,” J. Sound Vib.,
217(5), pp. 909–925.

[CrossRef]
Chen,
J.
,
Yang,
B.
, and
Menq,
C.
, 2000, “
Periodic Forced Response of Structures Having Three-Dimensional Frictional Constraints,” J. Sound Vib.,
229(4), pp. 775–792.

[CrossRef]
Tanrikulu,
O.
,
Kuran,
B.
,
Ozguven,
H.
, and
Imregun,
M.
, 1993, “
Forced Harmonic Response Analysis of Nonlinear Structures Using Describing Functions,” AIAA J.,
31(7), pp. 1313–1320.

[CrossRef]
Cardona,
A.
,
Coune,
T.
,
Lerusse,
A.
, and
Geradin,
M.
, 1994, “
A Multiharmonic Method for Non-Linear Vibration Analysis,” Int. J. Numer. Methods Eng.,
37(9), pp. 1593–1608.

[CrossRef]
Chen,
J.
, and
Menq,
C.
, 2001, “
Periodic Response of Blades Having Three-Dimensional Nonlinear Shroud Constraints,” ASME J. Eng. Gas Turbines Power,
123(4), pp. 901–909.

[CrossRef]
Lau,
S.
,
Cheung,
Y.
, and
Wu,
S.
, 1983, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems,” ASME J. Appl. Mech.,
50(4a), pp. 871–876.

[CrossRef]
Pierre,
C.
,
Ferri,
A.
, and
Dowell,
E.
, 1985, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method,” ASME J. Appl. Mech.,
52(4), pp. 958–964.

[CrossRef]
Poudou,
O.
, and
Pierre,
C.
, 2003, “
Hybrid Frequency-Time Domain Methods for the Analysis of Complex Structural Systems With Dry Friction Damping,” AIAA Paper No. 2003-1411.

Berthillier,
M.
,
Dupont,
C.
,
Mondal,
R.
, and
Barrau,
J.
, 1998, “
Blades Forced Response Analysis With Friction Dampers,” ASME J. Vib. Acoust.,
120(2), pp. 468–474.

[CrossRef]
Sundararajan,
P.
, and
Noah,
S.
, 1997, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems,” ASME J. Vib. Acoust.,
119(1), pp. 9–20.

[CrossRef]