0
Research Papers: Gas Turbines: Turbomachinery

Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbine Performance

[+] Author and Article Information
David Marten

Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: david.marten@tu-berlin.de

Alessandro Bianchini

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: bianchini@vega.de.unifi.it

Georgios Pechlivanoglou

Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: george@pechlivanoglou.com

Francesco Balduzzi

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: balduzzi@vega.de.unifi.it

Christian Navid Nayeri

Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: christian.nayeri@tu-berlin.de

Giovanni Ferrara

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: giovanni.ferrara@unifi.it

Christian Oliver Paschereit

Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: oliver.paschereit@tu-berlin.de

Lorenzo Ferrari

CNR-ICCOM,
National Research Council of Italy,
Via Madonna del Piano 10,
Sesto Fiorentino 50019, Italy
e-mail: lorenzo.ferrari@iccom.cnr.it

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received June 28, 2016; final manuscript received July 4, 2016; published online September 13, 2016. Editor: David Wisler.

J. Eng. Gas Turbines Power 139(2), 022606 (Sep 13, 2016) (9 pages) Paper No: GTP-16-1286; doi: 10.1115/1.4034326 History: Received June 28, 2016; Revised July 04, 2016

Interest in vertical-axis wind turbines (VAWTs) is experiencing a renaissance after most major research projects came to a standstill in the mid 1990s, in favor of conventional horizontal-axis turbines (HAWTs). Nowadays, the inherent advantages of the VAWT concept, especially in the Darrieus configuration, may outweigh their disadvantages in specific applications, like the urban context or floating platforms. To enable these concepts further, efficient, accurate, and robust aerodynamic prediction tools and design guidelines are needed for VAWTs, for which low-order simulation methods have not reached yet a maturity comparable to that of the blade element momentum theory for HAWTs' applications. The two computationally efficient methods that are presently capable of capturing the unsteady aerodynamics of Darrieus turbines are the double multiple streamtubes (DMS) theory, based on momentum balances, and the lifting line theory (LLT) coupled to a free vortex wake model. Both methods make use of tabulated lift and drag coefficients to compute the blade forces. Since the incidence angles range experienced by a VAWT blade is much wider than that of a HAWT blade, the accuracy of polars in describing the stall region and the transition toward the “thin plate like” behavior has a large effect on simulation results. This paper will demonstrate the importance of stall and poststall data handling in the performance estimation of Darrieus VAWTs. Using validated CFD simulations as a baseline, comparisons are provided for a blade in VAWT-like motion based on a DMS and a LLT code employing three sets of poststall data obtained from a wind tunnel campaign, XFoil predictions extrapolated with the Viterna–Corrigan model and a combination of them. The polar extrapolation influence on quasi-steady operating conditions is shown and azimuthal variations of thrust and torque are compared for exemplary tip-speed ratios (TSRs). In addition, the major relevance of a proper dynamic stall model into both the simulation methods is highlighted and discussed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Paraschivoiu, I. , 2002, Wind Turbine Design With Emphasis on Darrieus Concept, Polytechnic International Press, Montreal, Canada.
Aslam Bhutta, M. M. , Hayat, N. , Farooq, A. U. , Ali, Z. , Jamil, Sh. R. , and Hussain, Z. , 2012, “ Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques,” Renewable Sustainable Energy Rev., 16(4), pp. 1926–1939. [CrossRef]
Bianchini, A. , Ferrara, G. , Ferrari, L. , and Magnani, S. , 2012, “ An Improved Model for the Performance Estimation of an H-Darrieus Wind Turbine in Skewed Flow,” Wind Eng., 36(6), pp. 667–686. [CrossRef]
Sharpe, T. , and Proven, G. , 2010, “ Crossflex: Concept and Early Development of a True Building Integrated Wind Turbine,” Energy Build., 42(12), pp. 2365–2375. [CrossRef]
Balduzzi, F. , Bianchini, A. , Carnevale, E. A. , Ferrari, L. , and Magnani, S. , 2012, “ Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building,” Appl. Energy, 97, pp. 921–929. [CrossRef]
Mertens, S. , van Kuik, G. , and van Bussel, G. , 2003, “ Performance of an H-Darrieus in the Skewed Flow on a Roof,” ASME J. Sol. Energy Eng., 125(4), pp. 433–440. [CrossRef]
Blonk, D. L. , 2010, “ Floating Vertical Axis Wind Turbines,” M.Sc. thesis, TU Delft, The Netherlands.
Bianchini, A. , Ferrara, G. , and Ferrari, L. , 2015, “ Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield,” Energy Convers. Manage., 89, pp. 690–707. [CrossRef]
Deglaire, P. , 2010, “ Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines,” Digital Comprehensive Summaries of Uppsala Dissertations From the Faculty of Science and Technology, Vol. 704, Uppsala University, Uppsala, Sweden. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A356811&dswid=8372
Simão Ferreira, C. , Aagaard Madsen, H. , Barone, M. , Roscher, B. , Deglaire, P. , and Arduin, I. , 2014, “ Comparison of Aerodynamic Models for Vertical Axis Wind Turbines,” J. Phys.: Conf. Ser., 524(Conf. 1), p. 012125. [CrossRef]
Bianchini, A. , Ferrari, L. , and Magnani, S. , 2011, “ Start-Up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis,” ASME Paper No. GT2011-45882.
Balduzzi, F. , Bianchini, A. , Maleci, R. , Ferrara, G. , and Ferrari, L. , 2014, “ Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines,” ASME J. Turbomach., 137(1), p. 011006. [CrossRef]
Rainbird, J. , Bianchini, A. , Balduzzi, F. , Peiro, J. , Graham, J. M. R. , Ferrara, G. , and Ferrari, L. , 2015, “ On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines,” Energy Convers. Manage., 106, pp. 373–384. [CrossRef]
Lennie, M. , Pechlivanoglou, G. , Marten, D. , Nayeri, C. D. , and Paschereit, O. , 2015, “ A Review of Wind Turbine Polar Data and Its Effect on Fatigue Loads Simulation Accuracy,” ASME Paper No. GT2015-43249.
Bianchini, A. , Balduzzi, F. , Rainbird, J. , Peiro, J. , Graham, J. M. R. , Ferrara, G. , and Ferrari, L. , 2015, “ An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines. Part 1—Flow Curvature Effects,” ASME J. Eng. Gas Turbines Power, 138(3), p. 032602. [CrossRef]
Bianchini, A. , Balduzzi, F. , Rainbird, J. , Peiro, J. , Graham, J. M. R. , Ferrara, G. , and Ferrari, L. , 2015, “ An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines. Part II—Post-Stall Data Extrapolation Methods,” ASME J. Eng. Gas Turbines Power, 138(3), p. 032603. [CrossRef]
Linn, A. B. , 1999, “ Determination of Average Lift of a Rapidly Pitching Airfoil,” M.Sc. thesis in Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA.
Kirke, B. K. , 1998, “ Evaluation of Self-Starting Vertical Axis Wind Turbines for Standalone Applications,” Ph.D. thesis, Griffith University, Gold Coast, Australia. https://www120.secure.griffith.edu.au/rch/file/d1a0b579-7560-8462-75da-f75671e8cce2/1/01front.pdf
Balduzzi, F. , Bianchini, A. , Maleci, R. , Ferrara, G. , and Ferrari, L. , 2016, “ Critical Issues in the CFD Simulation of Darrieus Wind Turbines,” Renewable Energy, 85(01), pp. 419–435. [CrossRef]
Menter, F. R. , Langtry, R. B. , Likki, S. R. , Suzen, Y. B. , Huang, P. G. , and Völker, S. , 2004, “ A Correlation-Based Transition Model Using Local Variables Part 1—Model Formulation,” ASME J. Turbomach., 128(3), pp. 413–422.
Campobasso, M. S. , and Ferrari, L. , 2015, “ Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis,” ASME Paper No. GT2015-42663.
Daróczy, L. , Janiga, G. , Petrasch, K. , Webner, M. , and Thévenin, D. , 2015, “ Comparative Analysis of Turbulence Models for the Aerodynamic Simulation of H-Darrieus Rotors,” Energy, 90(Pt. 1), pp. 680–690. [CrossRef]
Paraschivoiu, I. , and Delclaux, F. , 1983, “ Double Multiple Streamtube Model With Recent Improvements,” J. Energy, 7(3), pp. 250–255. [CrossRef]
Marshall, L. , and Buhl, J., Jr. , 2005, “ A New Empirical Relationship Between Thrust Coefficient and Induction Factor for the Turbulent Windmill State,” National Renewable Energy Laboratory, CO, Report No. NREL/TP-500-36834. http://www.nrel.gov/docs/fy05osti/36834.pdf
Abbott, I. H. , and Von Doenhoff, A. E. , 1959, Theory of Wing Sections, Dover Publications, New York.
Bianchini, A. , 2011, “ Performance Analysis and Optimization of a Darrieus VAWT,” Ph.D. thesis, School of Energy Engineering and Innovative Industrial Technologies, University of Florence, Florence, Italy.
Marten, D. , Wendler, J. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2013, “ QBlade: An Open Source Tool for Design and Simulation of Horizontal And Vertical Axis Wind Turbines,” IJETAE, 3(3), pp. 264–269. https://www.researchgate.net/profile/David_Marten2/publication/275638847_QBLADE_An_Open_Source_Tool_for_Design_and_Simulation_of_Horizontal_and_Vertical_Axis_Wind_Turbines/links/5540cb600cf2b7904369d80d.pdf
Phillips, W. F. , and Snyder, D. O. , 2000, “ Modern Adaptation of Prandtl's Classic Lifting-Line Theory,” J. Aircr., 37(4), pp. 662–670. [CrossRef]
Leishman, J. G. , Bhagwat, M. J. , and Bagai, A. , 2002, “ Free-Vortex Filament Methods for the Analysis of Helicopter Rotor Wakes,” J. Aircr., 39(5), pp. 759–775. [CrossRef]
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. D. , and Paschereit, C. O. , 2015, “ Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade,” ASME J. Gas Eng. Turbines Power, 138(7), p. 072601.
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. D. , and Paschereit, C. O. , 2015, “ Integration of an Unsteady Nonlinear Lifting Line Free Vortex Wake Algorithm in a Wind Turbine Design Framework,” EWEA Annual Meeting, Paris, Nov. 17–20, Paper No. PO.280. https://www.researchgate.net/profile/David_Marten2/publication/284644420_Integration_of_an_Unsteady_Nonlinear_Lifting_Line_Free_Vortex_Wake_Algorithm_in_a_Wind_Turbine_Design_Framework/links/5655afed08aeafc2aabcbc8a.pdf
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. D. , and Paschereit, C. O. , 2016, “ Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool,” ISROMAC Conference, Honolulu, HI, Apr. 10–15, Paper No. 249. http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper/249.finalpaper.pdf
Marten, D. , 2015, “ QBlade Guidelines v0.9,” Version 1.0-07/15, TU Berlin, Berlin.
Drela, M., and Youngren, H., 2013, “ XFoil User Guide,” MIT Aero & Astro, Cambridge, MA, accessed Nov. 2, 2015, available online at: http://web.mit.edu/drela/Public/web/xfoil
Viterna, L. A. , and Corrigan, R. D. , 1982, “ Fixed Pitch Rotor Performance of Large Horizontal Axis Wind Turbines,” NASA Lewis Research Center, Cleveland, OH, Publication No. 00/1982 https://www.researchgate.net/profile/Larry_Viterna/publication/234284033_Fixed_pitch_rotor_performance_of_large_horizontal_axis_wind_turbines/links/550d820e0cf2ac2905a7472d.pdf.
Montgomerie, B. , 2004, “ Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to +-100 deg, With Application to Aerodynamics for Blades on Wind Turbines and Propellers,” FOI Swedish Defence Research Agency, Stockholm, Sweden, Report No. FOI-R-1035-SE.
Fujisawa, N. , and Shibuya, S. , 2001, “ Observations of Dynamic Stall on Darrieus Wind Turbine Blades,” J. Wind Eng. Ind. Aerodyn., 84(2), pp. 201–214. [CrossRef]
Lanzafame, R. , and Messina, M. , 2012, “ BEM Theory: How to Take Into Account the Radial Flow Inside of a 1-D Numerical Code,” Renewable Energy, 39(1), pp. 440–446. [CrossRef]
Laneville, A. , and Vittecoq, P. , 1986, “ Dynamic Stall: The Case of the Vertical Axis Wind Turbine,” ASME J. Sol. Energy Eng., 108(2), pp. 10–145. [CrossRef]
Berg, D. E. , 1983, “ Improved Double-Multiple Streamtube Model for the Darrieus-Type Vertical Axis Wind Turbine,” American Solar Energy Society Meeting, Minneapolis, MN, Report No. SAND-82-2479C. http://www.osti.gov/scitech/biblio/6279384
Leishman, J. G. , and Beddoes, T. S. , 1986, “ A Generalized Model for Airfoil Unsteady Aerodynamic Behaviour and Dynamic Stall Using the Indical Method,” 42nd Annual Forum of the American Helicopter Society, Washington, DC.
Balduzzi, F. , Bianchini, A. , Ferrara, G. , and Ferrari, L. , 2016, “ Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines,” Energy, 97, pp. 246–261. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Comparison between wind tunnel experiments and CFD simulations for the study turbine

Grahic Jump Location
Fig. 2

Power curve of a single blade as a function of the TSR (simulated with CFD)

Grahic Jump Location
Fig. 4

Power coefficient versus TSR for the analyzed single-blade rotor: CFD versus predictions with BEM and LLT models using either experimental polars or XFoil + Viterna

Grahic Jump Location
Fig. 5

Torque coefficient versus azimuthal angle at TSR = 2.2 for the analyzed single-blade rotor: CFD versus predictions with BEM and LLT models using either experimental polars or XFoil + Viterna

Grahic Jump Location
Fig. 6

Torque coefficient versus azimuthal angle at TSR = 3.9 for the analyzed single-blade rotor: CFD versus predictions with BEM and LLT models using either experimental polars or XFoil + Viterna

Grahic Jump Location
Fig. 11

Torque coefficient versus azimuthal angle at TSR = 2.8 for the analyzed single-blade rotor: CFD versus predictions with LLT using experimental, XFoil, and smoothed experimental polars

Grahic Jump Location
Fig. 12

Power coefficient versus TSR for the analyzed single-blade rotor: CFD versus predictions with BEM and LLT models using smoothed experimental polars (with dynamic stall submodels enabled)

Grahic Jump Location
Fig. 10

Power coefficient versus TSR for the analyzed single-blade rotor: CFD versus predictions with BEM and LLT models using experimental polars smoothed with the Viterna–Corrigan model after stall

Grahic Jump Location
Fig. 9

Smoothed lift curves used in the analysis for some relevant Reynolds numbers

Grahic Jump Location
Fig. 8

AoA and lift coefficient versus azimuthal angle at TSR = 3.9 for the analyzed single-blade rotor: BEM model using either experimental polars OR XFoil + Viterna

Grahic Jump Location
Fig. 7

AoA and lift coefficient versus azimuthal angle at TSR = 2.2 for the analyzed single-blade rotor: BEM model using either experimental polars or XFoil + Viterna

Grahic Jump Location
Fig. 3

Comparison of lift curves at Re = 150,000: experiments [13] versus XFoil simulations plus Viterna–Corrigan extrapolation

Grahic Jump Location
Fig. 13

Torque coefficient versus azimuthal angle at TSR = 2.8 (single-blade rotor): CFD versus BEM and LLT models using smoothed experimental polars

Grahic Jump Location
Fig. 14

Torque coefficient versus azimuthal angle at TSR = 2.8 (single-blade rotor): CFD versus BEM and LLT models (with dynamic stall) using smoothed experimental polars

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In