0
Research Papers: Gas Turbines: Turbomachinery

Potential of Retrofit Passive Flow Control for Small Horizontal Axis Wind Turbines

[+] Author and Article Information
D. Holst

Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de

G. Pechlivanoglou, F. Wegner, C. N. Nayeri, C. O. Paschereit

Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany

1Corresponding author.

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 1, 2016; final manuscript received July 29, 2016; published online October 11, 2016. Editor: David Wisler.

J. Eng. Gas Turbines Power 139(3), 032604 (Oct 11, 2016) (8 pages) Paper No: GTP-16-1298; doi: 10.1115/1.4034543 History: Received July 01, 2016; Revised July 29, 2016

The present paper analyzes the effect of passive flow control (PFC) with respect to the retrofitting on small horizontal axis wind turbines (sHAWTs). We conducted extensive wind tunnel studies on a high performance low Reynolds airfoil using different PFC elements, i.e., vortex generators (VGs) and Gurney flaps (GF). qblade, an open source blade element momentum (BEM) code, is used to study the retrofitting potential of a simulated small wind turbine. The turbine design is presented and discussed. The simulations include the data and polars gained from the experiments and give further insight into the effects of PFC on sHAWTs. Therefore, several different blades were simulated using several variations of VG positions. This paper discusses their influence on the turbine performance. The authors especially focus on the startup performance as well as achieving increased power output at lower wind speeds. The vortex generators reduce the risk of laminar separation and enhance the lift in some configurations by more than 40% at low Reynolds numbers.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Simic, Z. , Havelka, J. G. , and Vrhovcak, M. B. , 2013, “ Small Wind Turbines—A Unique Segment of the Wind Power Market,” Renewable Energy, 50(50), pp. 1027–1036. [CrossRef]
Acosta, J. , Combe, K. , Djokić, S. , and Hernando-Gil, I. , 2012, “ Performance Assessment of Micro and Small-Scale Wind Turbines in Urban Areas,” IEEE Syst. J., 6(1), pp. 152–163. [CrossRef]
Worasinchai, S. , Ingram, G. L. , and Dominy, R. G. , 2012, “ Effects of Wind Turbine Starting Capability on Energy Yield,” ASME J. Eng. Gas Turbines Power, 134(4), p. 042603. [CrossRef]
Althaus, D. , 1996, Niedriggeschwindigkeitsprofile: Profilentwicklungen und Polarenmessungen im Laminarwindkanal des Instituts für Aerodynamik und Gasdynamik der Universität Stuttgart (Aus dem Programm Strömungsmechanik), Vieweg, Wiesbaden, Germany.
Griffin, D. , and Russel, D. A. , 1994, “ Experimental Study of a Method for Predicting the Effect of Vortex-Generators,” AIAA Paper No. 94-2378.
Velte, C. , Hansen, M. , Meyer, K. , and Fuglsang, P. , 2008, “ Evaluation of the Performance of Vortex Generators on the DU 91-W2-250 Profile Using Stereoscopic PIV,” WMSCI 2008: 12th World Multi-Conference on Systemics, Cybernetics and Informatics, N. Callaos , W. Lesso , C. D. Zinn , J. Baralt , K. Eshraghian , S. Severi , eds., International Institute of Informatics and Systemics, Vol. 2, pp. 263–267. http://orbit.dtu.dk/fedora/objects/orbit:52882/datastreams/file_3161071/content
Müller-Vahl, H. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2012, “ Vortex Generators for Wind Turbine Blades a Combined Wind Tunnel and Wind Turbine Parametric Study,” ASME Paper No. GT2012-69197.
Standish, K. J. , and van Dam, C. P. , 2005, “ Computational Analysis of a Microtab-Based Aerodynamic Load Control System for Rotor Blades,” J. Am. Helicopter Soc., 50(3), pp. 249–258. [CrossRef]
Baker, J. P. , Standish, K. J. , and van Dam, C. P. , 2007, “ Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil,” J. Aircr., 44(2), pp. 563–572. [CrossRef]
Yen Nakafuji, D. T. , van Dam, C. P. , Smith, R. L. , and Collins, S. D. , 2001, “ Active Load Control for Airfoils Using Microtabs,” ASME J. Sol. Energy Eng., 123(4), pp. 282–289. [CrossRef]
van Dam, C. P. , Chow, R. , Zayas, J. R. , and Berg, D. E. , 2007, “ Computational Investigations of Small Deploying Tabs and Flaps for Aerodynamic Load Control,” J. Phys.: Conf. Ser., 75(75), p. 012027. [CrossRef]
Holst, D. , Bach, A. B. , Nayeri, C. N. , and Paschereit, C. O. , 2013, “ Influence of a Finite Width Micro-Tab on the Spanwise Lift Distribution,” ASME Paper No. GT2013-94381.
Bach, A. B. , Holst, D. , Nayeri, C. N. , and Paschereit, C. O. , 2013, “ Transitional Effects of Active Micro-Tabs for Wind Turbine Load Control,” ASME Paper No. GT2013-94369.
Holst, D. , Bach, A. B. , Nayeri, C. N. , Paschereit, C. O. , and Pechlivanoglou, G. , 2015, “ Wake Analysis of a Finite Width Gurney Flap,” ASME J. Eng. Gas Turbines Power, 138(6), p. 062602. [CrossRef]
Bach, A. B. , Berg, R. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2015, “ Experimental Investigation of the Aerodynamic Lift Response of an Active Finite Gurney Flap,” AIAA Paper No. 2015-1270.
Bach, A. B. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2015, “ Wake Vortex Field of an Airfoil Equipped With an Active Finite Gurney Flap,” AIAA Paper No. 2015-1271.
Meyer, R. , Hage, W. , Bechert, D. W. , Schatz, M. , and Thiele, F. , 2006, “ Drag Reduction on Gurney Flaps by Three-Dimensional Modifications,” J. Aircr., 43(1), pp. 132–140. [CrossRef]
Selig, M. S. , and McGranahan, B. D. , 2004, “ Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines,” ASME J. Sol. Energy Eng., 126(4), pp. 986–1001. [CrossRef]
Holst, D. , Pechlivanoglou, G. , Kohlrausch, C. T. , Nayeri, C. N. , and Paschereit, C. O. , 2016, “ sHAWT Design: Airfoil Aerodynamics Under the Influence of Roughness,” ASME Paper No. GT2016-56377.
Barlow, J. B. , Rae, W. H., Jr. , and Pope, A. , 1999, Low-Speed Wind Tunnel Testing, Wiley, New York.
Drela, M. , and Giles, M. B. , 1987, “ Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils,” AIAA J., 25(10), pp. 1347–1355. [CrossRef]
Drela, M. , 1989, “ XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,” Low Reynolds Number Aerodynamics (Lecture Notes in Engineering, Vol. 54), T. Mueller , ed., Springer, Berlin, pp. 1–12.
Huber, A. F. , and Mueller, T. J. , 1987, “ The Effect of Trip Wire Roughness on the Performance of the Wortmann FX 63-137 Airfoil at Low Reynolds Numbers,” Exp. Fluids, 5(4), pp. 263–272.
Bastedo, W. G., Jr. , and Mueller, T. J. , 1986, “ Spanwise Variation of Laminar Separation Bubbles on Wings at Low Reynolds Numbers,” J. Aircr., 23(9), pp. 687–694. [CrossRef]
Baker, J. P. , Standish, K. J. , and van Dam, C. P. , 2005, “ Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified S809 Airfoil,” AIAA Paper No. 2005-1186.
Marten, D. , 2014, “ QBlade,” Chair of Fluid Dynamics, TU Berlin, accessed Sept. 10, 2016, http://fd.tu-berlin.de/en/research/projects/wind-energy/qblade/
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2015, “ Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade,” ASME J. Eng. Gas Turbines Power, 138(7), p. 072601. [CrossRef]
Montgomerie, B. , 2004, “ Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to ±100 deg With Application to Aerodynamics for Blades on Wind Turbines and Propellers,” Swedish Defence Agency, Technical Report No. FOI-R-1035-SE.
Hansen, M. O. L. , 2008, Aerodynamics of Wind Turbines, 2nd ed., Earthscan, London.

Figures

Grahic Jump Location
Fig. 4

Gurney flap dimensions

Grahic Jump Location
Fig. 7

FX 63-137: Lift polars of GF configurations. (a) Re = 50 k, (b) Re = 75 k, (c) Re = 140 k, and (d) Re = 200 k.

Grahic Jump Location
Fig. 3

Measurement setup [19]

Grahic Jump Location
Fig. 8

FX 63-137: Lift polars of VG configurations. (a) Re = 50 k, (b) Re = 75 k, (c) Re = 140 k, and (d) Re = 200 k.

Grahic Jump Location
Fig. 1

Effect of Gurney flap on lift polar

Grahic Jump Location
Fig. 6

FX 63-137: Baseline analysis. (a) Lift polars under different Reynolds numbers and (b) standard deviation of lift polars.

Grahic Jump Location
Fig. 9

Chord and twist distribution

Grahic Jump Location
Fig. 10

Blade of simulated sHAWT

Grahic Jump Location
Fig. 14

FX 63-137: Drag polars of VG configurations: (a) Re = 140 k and (b) Re = 200 k

Grahic Jump Location
Fig. 13

Simulation results of different blades equipped with VGs. Simulation of the dirty blade is based on the data of Holst et al. [19]. (a) Power curve of blades fully equipped with VGs, (b) power curve of blade with VGs in root region, (c) thrust curve of blades fully equipped with VGs (d) thrust curve of blade with VGs in root region, (e) power coefficient over TSR of blades fully equipped with VGs, and (f) power coefficient over TSR of blade VGs in root region.

Grahic Jump Location
Fig. 15

Low-wind speed performance of VG-equipped blade

Grahic Jump Location
Fig. 11

Local Reynolds number with increasing wind speed

Grahic Jump Location
Fig. 12

Simulation results using Re-based polars for entire blade: (a) power curve and (b) thrust curve

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In