0
Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis

[+] Author and Article Information
Tobias Hummel

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de

Frederik Berger

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de

Michael Hertweck

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: hertweck@td.mw.tum.de

Bruno Schuermans

Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany;
GE Power,
Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com

Thomas Sattelmayer

Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 11, 2016; final manuscript received November 30, 2016; published online February 14, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 139(7), 071502 (Feb 14, 2017) (10 pages) Paper No: GTP-16-1324; doi: 10.1115/1.4035592 History: Received July 11, 2016; Revised November 30, 2016

This paper deals with high-frequency (HF) thermoacoustic instabilities in swirl-stabilized gas turbine combustors. Driving mechanisms associated with periodic flame displacement and flame shape deformations are theoretically discussed, and corresponding flame transfer functions (FTF) are derived from first principles. These linear feedback models are then evaluated by means of a lab-scale swirl-stabilized combustor in combination with part one of this joint publication. For this purpose, the models are used to thermoacoustically characterize a complete set of operation points of this combustor facility. Specifically, growth rates of the first transversal modes are computed, and compared against experimentally obtained pressure amplitudes as an indicator for thermoacoustic stability. The characterization is based on a hybrid analysis approach relying on a frequency domain formulation of acoustic conservation equations, in which nonuniform temperature fields and distributed thermoacoustic source terms/flame transfer functions can be straightforwardly considered. The relative contribution of flame displacement and deformation driving mechanisms–i.e., their significance with respect to the total driving–is identified. Furthermore, promoting/inhibiting conditions for the occurrence of high frequency, transversal acoustic instabilities within swirl-stabilized gas turbine combustors are revealed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Schuermans, B. , Bothien, M. R. , Maurer, M. , and Bunkute, B. , 2015, “ Combined Acoustic Damping-Cooling System for Operational Flexibility of GT26/24 Reheat Combustors,” ASME Paper No. GT2015-42287.
Sattelmayer, T. , 2010, “ Grundlagen der Verbrennung in Stationären Gasturbinen,” Stationäre Gasturbinen, 2. neu bearbeitete Auflage, Springer Verlag, Heidelberg, Germany, Chap. 9, pp. 397–452.
Culick, F. E. C. , 2006, Unsteady Motions in Combustion Chambers for Propulsion Systems. Number AC/323(AVT-039)TP/103, AGARDograph, RTO/NATO, Neuilly-Sur-Seine, France.
Schuermans, B. , Paschereit, C. O. , and Monkewitz, P. , 2006, “ Non-Linear Combustion Instabilities in Annular Gas-Turbine Combustors,” AIAA Paper No. 2006-0549.
Dowling, A. , 1997, “ Nonlinear Self-Excited Oscillations of a Ducted Flame,” J. Fluid Mech., 346, pp. 271–290. [CrossRef]
Polifke, W. , 2004, Combustion Instabilities (VKI Lecture Series), von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium.
Lieuwen, T. , 2012, Unsteady Combustor Physics, Cambridge University Press, New York.
Schwing, J. , and Sattelmayer, T. , 2013, “ High-Frequency Instabilities in Cylindrical Flame Tubes: Feedback Mechanism and Damping,” ASME Paper No. GT2013-94064.
Schwing, J. , Grimm, F. , and Sattelmayer, T. , 2012, “ A Model for Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Positions in Cylindrical Flame Tubes,” ASME Paper No. GT2012-68775.
Schwing, J. , 2013, “ Über die Interaktion von Transversalen Akustischen Moden, Strömung und Drallstabilisierter Flamme in Zylindrischen Flammenrohren,” Ph.D. thesis, Lehrstuhl f. Thermodynamik, Technische Universität München, München, Germany.
Zellhuber, M. , 2013, “ High Frequency Response of Auto-Ignition and Heat Release to Acoustic Perturbations,” Ph.D. thesis, Lehrstuhl f. Thermodynamik, Technische Universität München, München, Germany.
Zellhuber, M. , Schwing, J. , Schuermans, B. , Sattelmayer, T. , and Polifke, W. , 2014, “ Experimental and Numerical Investigations of Thermoacoustic Sources Related to High-Frequency Instabilities,” Int. J. Spray Combust. Dyn., 6(1), pp. 1–34. [CrossRef]
O'Connor, J. , Acharya, V. , and Lieuwen, T. , 2015, “ Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Process,” Prog. Energy Combust. Sci., 49, pp. 1–39. [CrossRef]
Berger, F. , Hummel, T. , Hertweck, M. , Schuermans, B. , and Sattelmayer, T. , 2016, “ High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response,” ASME Paper No. GT2016-57583.
Schulze, M. , Hummel, T. , Klarmann, N. , Berger, F. , Schuermans, B. , and Sattelmayer, T. , 2016, “ Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors,” ASME Paper No. GT2016-57913.
Hummel, T. , Hammer, K. , Romero, P. , Schuermans, B. , and Sattelmayer, T. , 2016, “ Low-Order Modeling of Nonlinear Transversal Thermoacoustic Oscillations in Gas Turbine Combustors,” ASME Paper No. GT2016-57913.
Schuermans, B. , 2003, “ Modeling and Control of Thermoacoustic Instabilities,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Rayleigh, J. , 1945, The Theory of Sound, Vol. 1–2, Dover Publications, New York.
Schimek, S. , Cosic, B. , Moeck, J. , Terhaar, S. , and Paschereit, C. , 2015, “ Amplitude-Dependent Flow Field and Flame Response to Axial and Tangential Velocity Fluctuations,” ASME J. Eng. Gas Turbines Power, 137(8), p. 081501. [CrossRef]
Gikadi, J. , 2013, “ Prediction of Acoustic Modes in Combustors Using Linearized Navier–Stokes Equations in Frequency Space,” Ph.D. thesis, Lehrstuhl f. Thermodynamik, Technische Universität München, München, Germany.
Rao, P. , and Morris, P. , 2006, “ Use of Finite Element Methods in Frequency Domain Aeroacoustics,” AIAA J., 44(7), pp. 1643–1652. [CrossRef]
Lefebvre, A. H. , and Ballal, D. R. , 1998, Gas Turbine Combustion, CRC Press, New York.

Figures

Grahic Jump Location
Fig. 1

Schematic of experimental combustor (dimensions in mm)

Grahic Jump Location
Fig. 2

Illustration of flame displacement during one acoustic period Ta at four time instances of the oscillation cycle

Grahic Jump Location
Fig. 3

Heat release fluctuations due to flame displacement

Grahic Jump Location
Fig. 4

Heat release fluctuations due to flame shape deformation

Grahic Jump Location
Fig. 5

Local oscillation of heat release and pressure

Grahic Jump Location
Fig. 6

Sample mean heat release and temperature distribution

Grahic Jump Location
Fig. 7

Mesh and boundary conditions

Grahic Jump Location
Fig. 8

Comparison of numerical versus experimental oscillation frequencies of all considered operation point for validation purposes

Grahic Jump Location
Fig. 9

Growth rates versus thermal power density

Grahic Jump Location
Fig. 10

Growth rates versus oscillation amplitudes

Grahic Jump Location
Fig. 11

Relative contributions to total driving

Grahic Jump Location
Fig. 12

Intersection zone between pressure mode and flame contour

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In