0
Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

A Study on the Emissions of Alternative Aviation Fuels

[+] Author and Article Information
Sebastian Riebl, Uwe Riedel

German Aerospace Center (DLR),
Institute of Combustion Technology,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany

Marina Braun-Unkhoff

German Aerospace Center (DLR),
Institute of Combustion Technology,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
e-mail: Marina.Braun-Unkhoff@dlr.de

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received November 2, 2016; final manuscript received December 30, 2016; published online March 21, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 139(8), 081503 (Mar 21, 2017) (11 pages) Paper No: GTP-16-1519; doi: 10.1115/1.4035816 History: Received November 02, 2016; Revised December 30, 2016

Currently, the aviation sector is seeking for alternatives to kerosene from crude oil, as part of the efforts combating climate change by reducing greenhouse gas (GHG) emissions, in particular carbon dioxide (CO2), and ensuring security of supply at affordable prices. Several synthetic jet fuels have been developed including sustainable biokerosene, a low-carbon fuel. Over the last years, the technical feasibility as well as the compatibility of alternative jet fuels with today's planes has been proven However, when burning a jet fuel, the exhaust gases are a mixture of many species, going beyond CO2 and water (H2O) emissions, with nitrogen oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (UHC) including aromatic species and further precursors of particles and soot among them. These emissions have an impact on the local air quality as well as on the climate (particles, soot, contrails). Therefore, a detailed knowledge and understanding of the emission patterns when burning synthetic aviation fuels are inevitable. In the present paper, these issues are addressed by studying numerically the combustion of four synthetic jet fuels (Fischer–Tropsch fuels). For reference, two types of crude-oil-based kerosene (Jet A-1 and Jet A) are considered, too. Plug flow calculations were performed by using a detailed chemical-kinetic model validated previously. The composition of the multicomponent jet fuels was imaged by using the surrogate approach. Calculations were done for relevant temperatures, pressures, residence times, and fuel equivalence ratios φ. Results are discussed for NOx, CO as well as for benzene and acetylene as major soot precursors. According to the predictions, the NOx and CO emissions are within about ±10% for all fuels considered, within the parameter range studied: T = 1800 K, T = 2200 K; 0.25 ≤ φ ≤ 1.8; p = 40 bar; t = 3 ms. The aromatics free GtL (gas to liquid) fuel displayed higher NOx values compared to Jet A-1/A. In addition, synthetic fuels show slightly lower (better) CO emission data than Jet A-1/A. The antagonist role of CO and NOx is apparent. Major differences were predicted for benzene emissions, depending strongly on the aromatics content in the specific fuel, with lower levels predicted for the synthetic aviation fuels. Acetylene levels show a similar, but less pronounced, effect.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

OECD, 2010, World Energy Outlook 2010, OECD Publishing, Paris.
Braun-Unkhoff, M. , Dembowski, J. , Herzler, J. , Karle, J. , Naumann, C. , and Riedel, U. , 2015, “ Alternative Fuels Based on Biomass: An Experimental and Modeling Study of Ethanol Co-Firing to Natural Gas,” ASME J. Eng. Gas Turbines Power, 137(9), p. 091503. [CrossRef]
Braun-Unkhoff, M. , Ermel, J. , Richter, S. , Kick, T. , Naumann, C. , and Riedel, U. , 2015, “ The Influence of Diluent Gases on Combustion Properties of Natural Gas: A Combined Experimental and Modeling Study,” ASME Paper No. GT2015-42752.
Braun-Unkhoff, M. , Kick, T. , Naumann, C. , and Riedel, U. , 2015, “ An Investigation of Combustion Properties of Alternative Fuels,” 10th European Conference on Industrial Furnaces and Boilers, Porto, Portugal, Apr. 7–10.
Methling, T. , Armbrust, N. , Haitz, T. , Speidel, M. , Poboss, N. , Braun-Unkhoff, M. , Dieter, H. , Kempter-Regel, B. , Kraaij, G. , Schliessmann, U. , Sterr, Y. , Wörner, A. , Hirth, T. , Riedel, U. , and Scheffknecht, G. , 2014, “ Power Generation Based on Biomass by Combined Fermentation and Gasification—A New Concept Derived From Experiments and Modelling,” Bioresour. Technol., 169, pp. 510–517. [CrossRef] [PubMed]
Herzler, J. , Herbst, J. , Kick, T. , Naumann, C. , Braun-Unkhoff, M. , and Riedel, U. , 2013, “ Alternative Fuels Based on Biomass: An Investigation on Combustion Properties of Product Gases,” ASME J. Eng. Gas Turbines Power, 135(3), p. 031401. [CrossRef]
Methling, T. , Braun-Unkhoff, M. , and Riedel, U. , 2013, “ A Chemical-Kinetic Investigation of Combustion Properties of Alternative Fuels—A Step Towards a More Efficient Power Generation,” ASME Paper No. GT2013-64994.
Herzler, J. , Braun-Unkhoff, M. , and Naumann, C. , 2011, “ Study of Combustion Properties of Product Gases From Wood Gasification and Anaerobic Algae Fermentation,” 19th European Biomass Conference and Exhibition, Berlin, p. 836.
Braun-Unkhoff, M. , Kick, T. , Frank, P. , and Aigner, M. , 2007, “ Alternative Investigation on Laminar Flame Speed as Part of Needed Combustion Characteristics of Biomass-Based Syngas Fuels,” ASME Paper No. GT2007-27479.
IEA, 2011, “ Technology Roadmap–Biofuels for Transport Report,” International Energy Agency (IEA), Paris.
Hansen, N. , Braun-Unkhoff, M. , Kathrotia, T. , Lucassen, A. , and Yang, B. , 2015, “ Understanding the Reaction Pathways in Premixed Flames Fueled by Blends of 1,3-Butadiene and n-Butanol,” Proc. Combust. Inst. 35(1), pp. 771–778. [CrossRef]
Schuler, D. , Naumann, C. , Braun-Unkhoff, M. , Zabel, F. , and Riedel, U. , 2014, “ A Single Pulse Shock Tube Study on the Pyrolysis of 2,5-Dimethylfuran,” Z. Physik. Chemie., 229(4), pp. 529–548.
Kick, T. , Kathrotia, T. , Braun-Unkhoff, M. , and Riedel, U. , 2011, “ An Experimental and Modeling Study of Laminar Flame Speeds of Alternative Aviation Fuels,” ASME Paper No. GT2011-45606.
Kick, T. , Herbst, J. , Kathrotia, T. , Marquetand, J. , Braun-Unkhoff, M. , Naumann, C. , and Riedel, U. , 2012, “ An Experimental and Modeling Study of Burning Velocities of Possible Future Synthetic jet Fuels,” Energy, 43(1), pp. 111–123. [CrossRef]
Mzé Ahmed, A. , Dagaut, P. , Hadj-Ali, K. , Dayma, G. , Kick, Th. , Herbst, J. , Kathrotia, T. , Braun-Unkhoff, M. , Herzler, J. , Naumann, C. , and Riedel, U. , 2012, “ Oxidation of a Coal-to-Liquid Synthetic jet Fuel: Experimental and Chemical Kinetic Modeling Study,” Energy Fuels, 26(10), pp. 6070–6079. [CrossRef]
Dagaut, P. , Karsenty, F. , Dayma, G. , Diévart, P. , Hadj-Ali, K. , Mzé-Ahmed, A. , Braun-Unkhoff, M. , Herzler, J. , Kathrotia, T. , Kick, T. , Naumann, C. , Riedel, U. , and Thomas, L. , 2014, “ Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) jet Fuel,” Combust. Flame, 161(3), pp. 835–847. [CrossRef]
ACARE, 2011, “ Protecting the Environment and the Energy Supply,” Advisory Council for Aviation Research and Innovation in Europe, Derby, UK.
High Level Group on Aviation Research, 2011, “ Flightpath 2050: Europe's Vision for Aviation,” European Commission, Brussels, Belgium, Report No. EUR 098 EN.
Braun-Unkhoff, M. , and Riedel, U. , 2015, “ Alternative Fuels in Aviation,” CEAS Aeron. J., 6(1), pp. 83–93. [CrossRef]
Braun-Unkhoff, M. , Kathrotia, T. , Rauch, B. , and Riedel, U. , 2015, “ About the Interaction Between Composition and Performance of Alternative jet Fuels,” CEAS Aeron. J., 7(1), pp. 83–94. [CrossRef]
Dooley, S. , Won, S. H. , Marcos, C. , Heyne, J. , Ju, Y. , Dryer, F. L. , Kumar, K. , Sung, C.-J. , Wang, H. , Oelschlaeger, M. A. , Santoro, R. J. , and Litzinger, T. A. , 2010, “ A jet Fuel Surrogate Formulated by Real Fuel Properties,” Combust. Flame, 157(12), pp. 2333–2339. [CrossRef]
Shepherd, J. E. , Nuyt, C. D. , and Lee, J. J. , 2010, “ Flash Point and Chemical Composition of Aviation Kerosene (Jet A),” Explosion Dynamics Laboratory, Report No. FM99-4.
Ministry of Defence, 2012, “ Turbine Fuel, Kerosene Type, Jet A-1 NATO Code F-35 Joint Service Designation: AVTUR,” Ministry of Defence, London, Defence Standard No. 91-91 Issue 7 (Amd2).
EU-Vri, 2013, “  Alfa-BIRD: Alternative Fuels and Biofuels for Aircraft,” EU-Vri, Stuttgart, Germany, Report No. EUFP7/2007-2013.
Natelson, R. H. , Kurman, M. S. , Miller, D. L. , and Cernansky, N. P. , 2008, “ Oxidation of Alternative jet Fuels and Their Surrogate Components,” 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 2008-970.
Naik, C. V. , Puduppakkam, K. V. , Modak, A. , Meeks, E. , Wang, Y. L. , Feng, Q. , and Tsotsis, T. T. , 2011, “ Detailed Chemical Kinetic Mechanism for Surrogates of Alternative jet Fuels,” Combust. Flame, 158(3), pp. 434–445. [CrossRef]
Bhagwan, R. , Habisreuther, P. , Zarzalis, N. , and Turrini, F. , 2014, “ An Experimental Comparison of the Emissions Characteristics of Standard Jet A-1 and Synthetic Fuels,” Flow, Turbul. Combust. 92(4), pp. 865–884. [CrossRef]
Bergthorson, J. M. , and Thomson, M. J. , 2015, “ A Review of the Combustion and Emissions Properties of Advanced Transportation Biofuels and Their Impact on Existing and Future Engines,” Renewable Sustainable Energy Rev., 42, pp. 1393–1417. [CrossRef]
Braun-Unkhoff, M. , Riedel, U. , and Wahl, C. , 2016, “ About the Emissions of Alternative jet Fuels,” CEAS Aeronaut. J., 8, p. 167.
International Civil Aviation Organization (ICAO), 2008, Environmental Protection, 3rd ed., International Standards and Recommended Practices, Montréal, QC, Canada.
Bockhorn, H. , ed., 1994, Soot Formation in Combustion, Mechanisms and Models, Springer, Heidelberg, Germany.
Wang, H. , 2011, “ Formation of Nascent Soot and Other Condensed-Phase Materials in Flames,” Proc. Comb. Inst., 33(1), pp. 41–67. [CrossRef]
Böhm, H. , and Braun-Unkhoff, M. , 2008, “ Numerical Study on the Effect of Oxygenated Blending Compounds Soot Formation in Shock Tubes,” Combust. Flame, 153(1–2), pp. 84–96. [CrossRef]
Böhm, H. , Braun-Unkhoff, M. , and Frank, P. , 2003, “ Investigations on Initial Soot Formation at High Pressures,” Prog. Comput. Fluid Dyn., 3(2/3/4), pp. 145–150. [CrossRef]
Hu, D. , Braun-Unkhoff, M. , and Frank, P. , 2000: “ Modeling Study on Initial Soot Formation at High Pressures,” Z. Physik. Chemie, 214 (4), p. 473.
Xu, C. , Braun-Unkhoff, M. , Naumann, C. , and Frank, P. , 2007, “ A Shock Tube Investigation of H Atom Production From the Thermal Dissociation of Ortho-Benzyne Radicals,” Proc. Combust. Inst., 31(1), pp. 231–239. [CrossRef]
Braun-Unkhoff, M. , Chrysostomou, A. , Frank, P. , Gutheil, E. , Lückerath, R. , and Stricker, W. , 1998, “ Experimental and Numerical Study on Soot Formation in Laminar High Pressure Flames,” Proc. Combust. Inst., 27(1), pp. 1565–1572. [CrossRef]
Lefebvre, A. H. , 1999, Gas Turbine Combustion, 2nd ed., Taylor & Francis, Philadelphia, PA.
Schulte, P. , and Schlager, H. , 1996, “ In-Flight Measurements of Cruise Altitude Nitric Oxide Emission Indices of Commercial Jet Aircraft,” Geophys. Res. Lett., 23(2), pp. 165–168. [CrossRef]
Turgut, E. T. , Cavcar, M. , Yay, O. D. , Ucarsu, M. , Yilmaz, E. , Usanmaz, O. , Armutlu, A. , Dogeroglu, T. , and Miake-Lye, R. C. , 2015, “ Analysis of Test-Cell Emission Measurements of Newly Overhauled Turbofan Engines,” J. Propul. Power, 31(2), pp. 559–572.
Kinsey, J. S. , Timko, M. T. , Herndon, S. C. , Wood, E. C. , Yu, Z. , Miake-Lye, R. C. , Lobo, P. , Whitefield, P. , Hagen, D. , Wey, C. , Anderson, B. E. , Beyersdorf, A. J. , Hudgins, C. H. , Thornhill, K. L. , Winstead, E. , Howard, R. , Bulzan, D. I. , Tacina, K. B. , and Knighton, W. B. , 2012, “ Determination of the Emissions From an Aircraft Auxiliary Power Unit (APU) During the Alternative Aviation Fuel Experiment (AAFEX),” J. Air Waste Manage. Assoc., 62(4), pp. 420–430. [CrossRef]
Heland, J. , and Schäfer, K. , 1998, “ Determination of Major Combustion Products in Aircraft Exhausts by 5FTIR6 Emission Spectroscopy,” Atmos. Environ., 32(18), pp. 3067–3072. [CrossRef]
Beyersdorf, A. J. , Timko, M. T. , Ziemba, L. D. , Bulzan, D. , Corporan, E. , Herndon, S. C. , Howard, R. , Miake-Lye, R. , Thornhill, K. L. , Winstead, E. , Wey, C. , Yu, Z. , and Anderson, B. E. , 2014, “ Reductions in Aircraft Particulate Emissions Due to the Use of Fischer–Tropsch Fuels,” Atmos. Chem. Phys., 14(1), pp. 11–23. [CrossRef]
Dagaut, P. , 2012, “ On the Kinetics of Hydrocarbons Oxidation From Natural Gas to Kerosene and Diesel Fuel,” Phys. Chem. Chem. Phys., 4(11), pp. 2079–2094. [CrossRef]
Kintech Lab., 2014, “ CWB 4.1 Theory,” Kintech Lab, Moscow, Russia.
Correa, S. M. , 1993, “ A Review of NOx Formation Under Gas-Turbine Combustion Conditions,” Combust. Sci. Technol., 87(1–6), pp. 329–362. [CrossRef]
Walsh, P. P. , and Fletcher, P. , 2004, Gas Turbine Performance, 2nd ed., Blackwell Science, Malden, MA.
Smith, G. P. , Golden, D. M. , Frenklach, M. , Moriarty, N. W. , Eiteneer, B. , Goldenberg, M. , Bowman, C. T. , Hanson, R. K. , Song, S. , Gardiner, W. C., Jr. , Lissianski, J. , and Qin, Z. , 1999, “ GRI 3.0 Mechanism, Version 3.0 7/30/99,” Gas Research Institute, Chicago, IL.
Riebl, S. , 2015, “ Untersuchungen zum Verbrennungsverhalten von Alternativen Flugtreibstoffen Unter Berücksichtigung der Schadstoffe Stickoxide, Kohlenmonoxid und Benzol,” Stuttgart University, Stuttgart, Germany.
Watson, G. M. G. , Munzar, J. D. , and Bergthorson, J. M. , 2013, “ Diagnostics and Modeling of Stagnation Flames for the Validation of Thermochemical Combustion Models for NOx Predictions,” Energy Fuels, 27(11), pp. 7031–7043. [CrossRef]
Lipardi, A. C. A. , Bergthorson, J. M. , and Bourque, G. , 2016, “ NOx Emissions Modeling and Uncertainty From Exhaust-Gas-Diluted Flames,” ASME J. Eng. Gas Turbines Power, 138(5), p. 051506. [CrossRef]
Lee, D. S. , Pitari, G. , Grewe, V. , Gierens, K. , Penner, J. E. , Petzold, A. , Prather, M. J. , Schumann, U. , Bais, A. , Berntsen, T. , Iachetti, D. , Lim, L. L. , and Sausen, R. , 2010, “ Transport Impacts on Atmosphere and Climate: Aviation,” Atmos. Environ., 44(37), pp. 4678–4734. [CrossRef]
Corporan, E. , and Cheng, M.-D. , 2010, “ Emissions Characteristics of Military Helicopter Engines With JP-8 and Fischer–Tropsch Fuels,” J. Propul. Power, 26(2), pp. 317–324. [CrossRef]
Changlie, W. , and Bulzan, D. , 2013, “ Effects of Bio-Derived Fuels on Emissions and Performance Using a 9-Point Lean Direct Injection Low Emissions Concept,” ASME Paper No. GT2013-94888.
Wilkerson, J. T. , Jacobson, M. Z. , Malwitz, A. , Balasubramanian, S. , Wayson, R. , Fleming, G. , Naiman, A. D. , and Lele, S. K. , 2010, “ Analysis of Emission Data From Global Commercial Aviation: 2004 and 2006,” Atmos. Chem. Phys., 10(13), pp. 6391–6408. [CrossRef]
Egli, R. A. , 1990, “ Nitrogen Oxide Emissions From Air Traffic,” CHIMIA, 44(11), pp. 369–371.
Gierens, K. , Braun-Unkhoff, M. , Le Clercq, P. , Plohr, M. , Schlager, H. , and Wolters, F. , 2015, “ Condensation Trails From Biofuels/Kerosene Blends Scoping Study,” EU Tender, Brussels, Belgium, Report No. ENER/C2/2013-627.

Figures

Grahic Jump Location
Fig. 1

Emission characteristics in a gas turbine, principle power dependency [38]

Grahic Jump Location
Fig. 2

CO emissions: Calculated for four alternative aviation fuels as well as for Jet A-1 and Jet A, at T = 1800 K and at T = 2200 K for p = 40 bar. CO emissions calculated for the GtL fuels are the lowest.

Grahic Jump Location
Fig. 3

CO emission indices, as derived from CO emissions calculated of the six fuels. Note the similarity of the emission levels between the six fuels for all conditions considered.

Grahic Jump Location
Fig. 4

NOx emissions: Simulated at T = 1800 K and at T = 2200 K. Curves follow the depicted trends monotonically.

Grahic Jump Location
Fig. 5

NOx emission indices as derived from NOx emissions calculated of the six fuels, (a) T = 1800 K, 0.25 ≤ φ ≤ 1.4, (b) T = 1800 K, 1.5 ≤ φ ≤ 1.8, (c) T = 2200 K, 0.25 ≤ φ ≤ 1.4, and (d) T = 2200 K, 1.4 ≤ φ ≤ 1.8

Grahic Jump Location
Fig. 6

Benzene emissions simulated at T = 1800 K ((a)(b)) and at T = 2200 K ((c)–(d)). Only minor amounts of benzene remain at t = 0.003 s. For the parameter considered, Jet A-1 shows the highest peak emissions, whereas the GtL fuels show the lowest peak emission values.

Grahic Jump Location
Fig. 7

Acetylene emissions simulated at T = 1800 K ((a)–(b)) and at T = 2200 K ((c)–(d)). Only minor amounts of acetylene remain for fuel-lean mixtures, with significant acetylene levels for fuel rich mixtures.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In