0
Research Papers: Gas Turbines: Heat Transfer

Development of Advanced Thermal Barrier Coatings With Improved Temperature Capability

[+] Author and Article Information
Gregoire Witz

GE Power,
Baden 5401, Switzerland
e-mail: gregoire.witz@ge.com

Markus Schaudinn

GE Power,
Baden 5401, Switzerland
e-mail: markus.schaudinn@ge.com

Joerg Sopka

GE Power,
Mannheim 65309, Germany
e-mail: joerg.sopka@ge.com

Tobias Buecklers

GE Power,
Birr 5242, Switzerland
e-mail: tobias.buecklers@ge.com

Contributed by the Heat Transfer Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received June 20, 2016; final manuscript received February 1, 2017; published online March 28, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 139(8), 081901 (Mar 28, 2017) (6 pages) Paper No: GTP-16-1239; doi: 10.1115/1.4035903 History: Received June 20, 2016; Revised February 01, 2017

Continuously increasing hot gas temperatures in heavy duty gas turbines lead to increased thermal loadings of the hot gas path materials. Thermal barrier coatings (TBCs) are used to reduce the superalloys temperature and cooling air needs. Until now 6–8 wt. % yttria stabilized zirconia (YSZ) is the first choice material for such coatings, but it is slowly reaching its maximum temperature capability due to the phase transformation at high temperature and sintering. New thermal barrier coating material with increased temperature capability enables the next generation of gas turbine with >60% combined cycle efficiency. Such material solutions have been developed through a multistage selection process. In a first step, critical material performance requirements for thermal barrier coating performance have been defined based on the understanding of standard TBC degradation mechanisms. Based on these requirements, more than 30 materials were a preselected and evaluated as potential coating materials. After carefully reviewing their properties both from literature data and laboratory test results on raw materials, five materials were selected for coating manufacturing and laboratory testing. Based on the coating manufacturing trials and laboratory test results, two materials have been selected for engine testing, in a first step in GT26 Birr Test Power Plant and afterward in customer engines. For such tests, the original coating thickness has been increased such to achieve coating surface temperature ∼100 K higher than with a standard thermal barrier coating. Both coatings performed as predicted in both GT26 Birr Test Power Plant and customer engines.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Miller, R. A. , Smialek, J. L. , Garlick, R. G. , and Heuer, A. H. , 1981, “ Phase Stability in Plasma Sprayed Partially Stabilized Zirconia Yttria,” First International Conference on the Science and Technology of Zirconia, Science and Technology of Zirconia, Cleveland, OH, June 16–18, pp. 241–253.
Scott, H. G. , 1975, “ Phase Relationships in the Zirconia-Yttria System,” J. Mater. Sci., 10(9), pp. 1527–1535. [CrossRef]
Krogstad, J. A. , Krämer, S. , Lipkin, D. M. , Johnson, C. A. , Mitchell, D. R. G. , Cairney, J. M. , and Levi, C. G. , 2011, “ Phase Stability of t′-Zirconia-Based Thermal Barrier Coatings: Mechanistic Insights,” J. Am. Ceram. Soc., 94(S1), pp. S168–S177. [CrossRef]
Witz, G. , Shklover, V. , Steurer, W. , Bachegowda, S. , and Bossmann, H.-P. , 2007, “ Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns,” J. Am. Ceram. Soc., 90(9), pp. 2935–2940. [CrossRef]
Bansal, N. P. , and Zhu, D. , 2007, “ Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings,” Mater. Sci. Eng. A, 459(1–2), pp. 192–195. [CrossRef]
Bhattacharya, A. K. , Shklover, V. , Steurer, W. , Witz, G. , Bossmann, H.-P. , and Fabrichnaya, O. , 2011, “ Ta2O5–Y2O3–ZrO2 System: Experimental Study and Preliminary Thermodynamic Description,” J. Eur. Ceram. Soc., 31(3), pp. 249–257. [CrossRef]
Bisson, J.-F. , Fournier, D. , Poulain, M. , Lavigne, O. , and Mévrel, R. , 2000, “ Thermal Conductivity of Yttria–Zirconia Single Crystals, Determined With Spatially Resolved Infrared Thermography,” J. Am. Ceram. Soc., 83(8), pp. 993–998.
Brandon, J. R. , and Taylor, R. , 1991, “ Phase Stability of Zirconia-Based Thermal Barrier Coatings Part II. Zirconia—Ceria Alloys,” Surf. Coat. Technol., 46(1), pp. 91–101. [CrossRef]
Cano, C. , Osendi, M. I. , Belmonte, M. , and Miranzo, P. , 2006, “ Effect of the Type of Flame on the Microstructure of CaZrO3 Combustion Flame Sprayed Coatings,” Surf. Coat. Technol., 201(6), pp. 3307–3313. [CrossRef]
Cao, X. , Vassen, R. , Jungen, W. , Schwartz, S. , Tietz, F. , and Stöver, D. , 2001, “ Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating,” J. Am. Ceram. Soc., 84(9), pp. 2086–2090. [CrossRef]
Cao, X. , Vassen, R. , Fischer, W. , Tietz, F. , Jungen, W. , and Stöver, D. , 2003, “ Lanthanum-Cerium Oxide as a Thermal Barrier-Coating Material for High-Temperature Applications,” Adv. Mater., 15(17), pp. 1438–1442. [CrossRef]
Cao, X. , Vassen, R. , and Stöver, D. , 2004, “ Ceramic Materials for Thermal Barrier Coatings,” J. Eur. Ceram. Soc., 24(1), pp. 1–10. [CrossRef]
Cao, X. , Vassen, R. , Tietz, F. , and Stöver, D. , 2006, “ New Double-Ceramic-Layer Thermal Barrier Coatings Based on Zirconia–Rare Earth Composite Oxides,” J. Eur. Ceram. Soc., 26(3), pp. 247–251. [CrossRef]
Chen, Z. , Trice, R. , Wang, H. , Porter, W. , Howe, J. , Besser, M. , and Sordelet, D. , 2005, “ Co-Doping of Air Plasma-Sprayed Yttria- and Ceria-Stabilized Zirconia for Thermal Barrier Applications,” J. Am. Ceram. Soc., 88(6), pp. 1584–1590. [CrossRef]
Clarke, D. R. , and Levi, C. G. , 2003, “ Materials Design for the Next Generation Thermal Barrier Coatings,” Annu. Rev. Mater. Res., 33(1), pp. 383–417. [CrossRef]
Evans, A. G. , Clarke, D. R. , and Levi, C. G. , 2008, “ The Influence of Oxides on the Performance of Advanced Gas Turbines,” J. Eur. Ceram. Soc., 28(7), pp. 1405–1419. [CrossRef]
Friedrich, C. , Gadow, R. , and Schirmer, T. , 2000, “ Lanthanum Hexaaluminate—A New Material for Atmospheric Plasma Spraying of Advanced Thermal Barrier Coatings,” J. Therm. Spray Technol., 10(4), pp. 592–598. [CrossRef]
Fukuda, K. , and Matsubara, H. , 2005, “ Thermal Expansion of SrY2O4,” J. Am. Ceram. Soc., 88(11), pp. 3205–3206. [CrossRef]
Han, Z. , Xu, B. , Wang, H. , and Zhou, S. , 2007, “ Comparison of Thermal Shock Behavior Between Currently Plasma Spray and Supersonic Plasma Spray CeO2–Y2O3–ZrO2 Graded Thermal Barrier Coatings,” Surf. Coat. Technol., 201(9–11), pp. 5253–5256. [CrossRef]
Leckie, R. M. , Krämer, S. , Rühle, M. , and Levi, C. G. , 2005, “ Thermochemical Compatibility Between Alumina and ZrO2–Gd3O2 Thermal Barrier Coatings,” Acta Mater., 53(11), pp. 3281–3292. [CrossRef]
Lee, E. Y. , Sohn, Y.-H. , Jha, S. K. , Holmes, J. W. , and Sisson, R. D., Jr. , 2002, “ Phase Transformations of Plasma-Sprayed Zirconia–Ceria Thermal Barrier Coatings,” J. Am. Ceram. Soc., 85(8), pp. 2065–2071. [CrossRef]
Lehmann, H. , Pitzer, D. , Pracht, G. , Vassen, R. , and Stöver, D. , 2003, “ Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System,” J. Am. Ceram. Soc., 86(8), pp. 1338–1344. [CrossRef]
Leoni, M. , Jones, R. L. , and Scardi, P. , 1998, “ Phase Stability of Scandia–Yttria-Stabilized Zirconia TBCs,” Surf. Coat. Technol., 108–109, pp. 107–113. [CrossRef]
Levi, C. G. , 2004, “ Emerging Materials and Processes for Thermal Barrier Systems,” Curr. Opin. Solid State Mater. Sci., 8(1), pp. 77–91. [CrossRef]
Ling, L. , Qiang, X. , Fuchi, W. , and Hongsong, Z. , 2008, “ Thermophysical Properties of Complex Rare-Earth Zirconate Ceramic for Thermal Barrier Coatings,” J. Am. Ceram. Soc., 91(7), pp. 2398–2401. [CrossRef]
Ma, W. , Mack, D. E. , Vassen, R. , and Stöver, D. , 2008, “ Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings,” J. Am. Ceram. Soc., 91(8), pp. 2630–2635. [CrossRef]
Maekawa, T. , and Kurosaki, K. , 2007, “ Thermophysical Properties of BaY2O4: A New Candidate Material for Thermal Barrier Coatings,” Mater. Lett., 61(11–12), pp. 2303–2306. [CrossRef]
Markocsan, N. , Nylén, P. , Wigren, J. , and Li, X.-H. , 2007, “ Low Thermal Conductivity Coatings for Gas Turbine Applications,” J. Therm. Spray Technol., 16(4), pp. 498–505. [CrossRef]
Matsumoto, M. , Aoyama, K. , Matsubara, H. , Takayama, K. , Banno, T. , Kagiya, Y. , and Sugita, Y. , 2005, “ Thermal Conductivity and Phase Stability of Plasma Sprayed ZrO2–Y2O3–La2O3 Coatings,” Surf. Coat. Technol., 194(1), pp. 31–35. [CrossRef]
Matsumoto, M. , Takayama, H. , Yokoe, D. , Mukai, K. , Matsubara, H. , Kagiya, Y. , and Sugita, Y. , 2006, “ Thermal Cycle Behavior of Plasma Sprayed La2O3, Y2O3 Stabilized ZrO2 Coatings,” Scr. Mater., 54(12), pp. 2035–2039. [CrossRef]
Mogilevsky, P. , Boakye, E. E. , and Hay, R. S. , 2007, “ Solid Solubility and Thermal Expansion in a LaPO4–YPO4 System,” J. Am. Ceram. Soc., 90(6), pp. 1899–1907. [CrossRef]
Padture, N. P. , and Klemens, P. G. , 1997, “ Low Thermal Conductivity in Garnets,” J. Am. Ceram. Soc., 80(4), pp. 1018–1020. [CrossRef]
Pan, W. , Wan, C. L. , Xu, Q. , Wang, J. , and Qu, Z. X. , 2007, “ Thermal Diffusivity of Samarium–Gadolinium Zirconate Solid Solutions,” Thermochim. Acta, 455(1–2), pp. 16–20. [CrossRef]
Petric, A. , and Ling, H. , 2007, “ Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures,” J. Am. Ceram. Soc., 90(5), pp. 1515–1520. [CrossRef]
Pitek, F. M. , and Levi, C. G. , 2007, “ Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 System,” Surf. Coat. Technol., 201(12), pp. 6044–6050. [CrossRef]
Raghavan, S. , Wang, H. , Dinwiddie, R. B. , Porter, W. D. , and Vassen, R. , 2004, “ Ta2O5/Nb2O5 and Y2O3 Co-Doped Zirconias for Thermal Barrier Coatings,” J. Am. Ceram. Soc., 87(3), pp. 431–437. [CrossRef]
Schaedler, T. A. , Francillon, W. , Gandhi, A. S. , Grey, C. P. , Sampath, S. , and Levi, C. G. , 2005, “ Phase Evolution in the YO1.5–TiO2–ZrO2 System Around the Pyrochlore Region,” Acta Mater., 53(10), pp. 2957–2968. [CrossRef]
Schaedler, T. A. , Leckie, R. M. , Krämer, S. , Evans, A. G. , and Levi, C. G. , 2007, “ Toughening of Nontransformable t’-YSZ by Addition of Titania,” J. Am. Ceram. Soc., 90(12), pp. 3896–3901.
Gaul, G. , 2004, “ Advanced Turbine Systems Program—Phase III—Technical Progress—Final Report,” Siemens Westinghouse Power Corporation, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, DOE Contract Nos. DE-AC21-93MC30247 and DE-FC21-95MC32267, pp. 1–240.
Stecura, S. , 1987, “ New ZrO2-Yb2O3 Plasma-Sprayed Coatings for Thermal Barrier Applications,” Thin Solid Films, 150(1), pp. 15–40. [CrossRef]
Stöver, D. , Pracht, G. , Lehmann, H. , Dietrich, M. , Döring, J.-E. , and Vassen, R. , 2004, “ New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings,” J. Therm. Spray Technol., 13(1), pp. 76–83. [CrossRef]
Vassen, R. , Cao, X. , Tietz, F. , Basu, D. , and Stöver, D. , 2000, “ Zirconates as New Materials for Thermal Barrier Coatings,” J. Am. Ceram. Soc., 83(8), pp. 2023–2208. [CrossRef]
Vassen, R. , Traeger, F. , and Stöver, D. , 2004, “ New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems,” Int. J. Appl. Ceram. Technol., 1(4), pp. 351–361. [CrossRef]
Winter, M. R. , and Clarke, D. R. , 2007, “ Oxide Materials With Low Thermal Conductivity,” J. Am. Ceram. Soc., 90(2), pp. 533–540. [CrossRef]
Wu, J. , Wei, X. , Padture, N. P. , Klemens, P. G. , Gell, M. , Garcıa, E. , Miranzo, P., and Osendi, M. I., 2002, “ Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications,” J. Am. Ceram. Soc., 85(12), pp. 3031–3035. [CrossRef]
Wu, J. , Padture, N. P. , Klemens, P. G. , Gell, M. , García, E. , Miranzo, P. , and Osendi, M. I. , 2002, “ Thermal Conductivity of Ceramics in the ZrO2-GdO1.5 System,” J. Mater. Res., 17(12), pp. 3193–3200. [CrossRef]
Wu, J. , Padture, N. P. , and Gell, M. , 2004, “ High-Temperature Chemical Stability of Low Thermal Conductivity ZrO2–GdO1:5 Thermal-Barrier Ceramics in Contact With a-Al2O3,” Scr. Mater., 50(10), pp. 1315–1318. [CrossRef]
Xu, Q. , Pan, W. , Wang, J. , Wan, C. , Qi, L. , Miao, H. , Mori, K., and Torigoe, T., 2006, “ Rare-Earth Zirconate Ceramics With Fluorite Structure for Thermal Barrier Coatings,” J. Am. Ceram. Soc., 89(1), pp. 340–342. [CrossRef]
Yamanaka, S. , Kurosaki, K. , Oyama, T. , Muta, H. , Uno, M. , Matsuda, T. , and Kobayashi, S.-I. , 2005, “ Thermophysical Properties of Perovskite-Type Strontium Cerate and Zirconate,” J. Am. Ceram. Soc., 88(6), pp. 1496–1499. [CrossRef]
Yokokawa, H. , Sakai, N. , and Kawada, T. , 1992, “ Phase Diagram Calculations for ZrO2 Based Ceramics: Thermodynamic Regularities in Zirconate Formation and Solubilities of Transition Metal Oxides,” Science and Technology of Zirconia V, Technomic Publishing, Lancaster, PA, pp. 59–68.
Zhou, H. , Yi, D. , Yu, Z. , and Xiao, L. , 2007, “ Preparation and Thermophysical Properties of CeO2 Doped La2Zr2O7 Ceramic for Thermal Barrier Coatings,” J. Alloys Compd., 438(1–2), pp. 217–221. [CrossRef]
Zhu, D. , and Miller, R. A. , 2004, “ Development of Advanced Low Conductivity Thermal Barrier Coatings,” Int. J. Appl. Ceram. Technol., 1(4), pp. 86–94.
Zhu, D. , Nesbitt, J. A. , Barrett, C. A. , McCue, T. R. , and Miller, R. A. , 2004, “ Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings,” J. Therm. Spray Technol., 13(1), pp. 84–92. [CrossRef]
Zhu, D. , Chen, Y. L. , and Miller, R. A. , 2004, “ Defect Clustering and Nanophase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings,” NASA Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2004-212480.
Bossmann, H.-P. , Bachegowda, S. , and Schnell, A. , 2010, “ Manufacturing Optimization for Bondcoat/Thermal Barrier Coating Systems,” ASME J. Eng. Gas Turbines Power, 132(2), p. 022101. [CrossRef]
Witz, G. , Staerk, K. F. , Maggi, C. M. , Krasselt, U. , and Bossmann, H.-P. , 2014, “ Burner Rig Testing of Thermal Barrier Coatings for Lifetime Prediction,” ASME Paper No. GT2014-25372.

Figures

Grahic Jump Location
Fig. 1

Average ranking and average ranking standard deviation for 32 candidate TBC materials

Grahic Jump Location
Fig. 2

Furnace cyclic test results for five different TBC candidate materials with results for a single-layer 7YSZ samples as a reference

Grahic Jump Location
Fig. 3

Burner rig test results for five different TBC candidate materials with results for a single-layer 7YSZ samples as a reference

Grahic Jump Location
Fig. 4

Picture of the SEV combustor liner segment coated with New TBC 4 after GT26 Birr Test Power Plant test campaign

Grahic Jump Location
Fig. 5

Picture of the SEV combustor liner segment coated with New TBC 1 after GT26 Birr Test Power Plant test campaign

Grahic Jump Location
Fig. 6

Borescopic picture of the LPT blade 1 coated with New TBC 1 (first blade) and New TBC 4 (second and subsequent blades) at first A-inspection

Grahic Jump Location
Fig. 7

Borescopic picture of the SHS-A coated with New TBC 1. The coating was smoothly cut through by the LPT blade 1 without bringing any coating or blade tip damages.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In