0
research-article

Chemical Kinetic Mechanism Study on Premixed Combustion of Ammonia/Hydrogen Fuels for Gas Turbine Use

[+] Author and Article Information
Hua Xiao

School of Engineering, Cardiff University Room W/2.06, Cardiff School of Engineering, Queen’s Buildings, The Parade, Cardiff, Wales, UK
XiaoH4@cardiff.ac.uk

Agustin Valera-Medina

School of Engineering, Cardiff University Room S/1.03a, Cardiff School of Engineering, Queen’s Buildings, The Parade, Cardiff, Wales, UK
ValeraMedinaA1@cardiff.ac.uk

1Corresponding author.

ASME doi:10.1115/1.4035911 History: Received November 29, 2016; Revised January 31, 2017

Abstract

To explore the potential of ammonia-based fuel as an alternative fuel for future power generation, studies involving robust mathematical, chemical, thermofluidic analyses are required to progress towards industrial implementation. Thus, the aim of this study is to identify reaction mechanisms that accurately represents ammonia kinetics over a large range of conditions, particularly at industrial conditions. To comprehensively evaluate the performance of the chemical mechanisms, 12 mechanisms are tested in terms of flame speed, NOx emissions and ignition delay against experimental data. Freely propagating flame calculations indicate that Mathieu mechanism yields the best agreement within experimental data range of different ammonia concentrations, equivalence ratios and pressures. Ignition delay times calculations show that Mathieu mechanism and Tian mechanism yield the best agreement with data from shock tube experiments at pressures up to 30 atm. Sensitivity analyses were performed in to identify reactions and ranges of conditions that require optimization in future mechanism development. The present study suggests that the Mathieu mechanism and Tian mechanism are the best suited for the further study on ammonia/hydrogen combustion chemistry under practical industrial conditions. The results obtained in this study also allow gas turbine designers and modelers to choose the most suitable mechanism for combustion studies.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In