0
Research Papers: Gas Turbines: Turbomachinery

Gas Turbine Compressor Fouling and Washing in Power and Aerospace Propulsion

[+] Author and Article Information
Uyioghosa Igie

School of Aerospace, Transport and
Manufacturing (SATM),
Cranfield University,
Bedfordshire MK43 0AL, UK
e-mail: u.igie@cranfield.ac.uk

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received April 21, 2017; final manuscript received May 30, 2017; published online September 6, 2017. Assoc. Editor: Klaus Brun.

J. Eng. Gas Turbines Power 139(12), 122602 (Sep 06, 2017) (11 pages) Paper No: GTP-17-1147; doi: 10.1115/1.4037453 History: Received April 21, 2017; Revised May 30, 2017

This paper presents a well-researched subject area within academia, with a high degree of application in the industry. Compressor fouling effect is one of the commonest degradations associated with gas turbine operations. The aim of this review is to broadly communicate some of the current knowledge while identifying some gaps in understanding, in an effort to present some industry/operational interest for academic research. Likewise, highlight some studies from academia that present the current state of research, with their corresponding methods (experimental, numerical, actual operations, and analytical methods). The merits and limitations of the individual method and their approaches are discussed, thereby providing industry practitioners with a view to appreciating academic research outputs. The review shows opportunities for improving compressor washing effectiveness through computational fluid dynamics (CFD). This is presented in the form of addressing the factors influencing compressor washing efficiency. Pertinent questions from academic research and operational experiences are posed, on the basis of this review.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Weg, 2014, “ Hot Mission for a Generator: Autonomous Electricity Generation in the Desert,” WEG, Huehuetoca, Mexico, accessed Jan. 21, 2017, http://old.weg.net/mx/Media-Center/Noticias/Productos-y-Soluciones/Hot-mission-for-a-generator-autonomous-electricity-generation-in-the-desert
Overton, T. W. , 2014, “ CPV Sentinel Energy Project,” Power, Desert Hot Springs, CA, accessed Jan. 21, 2017, http://www.powermag.com/cpv-sentinel-energy-project-desert-hot-springs-california/
Alpert, P. , Kishcha, P. , Shtivelman, A. , Krichak, S. O. , and Joseph, J. H. , 2004, “ Vertical Distribution of Saharan Dust Based on 2.5-Year Model Predictions,” Atmos. Res., 70(2), pp. 109–130. [CrossRef]
Google Maps, 2017, “ Satellite View of Queen Alia International Airport,” Google Inc., Mountain View, CA, accessed May, 9, 2017, https://www.google.co.uk/maps/@31.7256645,35.9955731,8629m/data=!3m1!1e3
Google Maps, 2017, “ Satellite View of Hong Kong International Airport,” Google Inc., Mountain View, CA, accessed May, 9, 2017, https://www.google.co.uk/maps/@22.2999522,113.9190065,9386m/data=!3m1!1e3
Khanna, A. S. , 2016, High Temperature Corrosion, World Scientific Publishing, Hackensack, NJ. [CrossRef]
Igie, U. , Goiricelaya, M. , Nalianda, D. , and Minervino, O. , 2016, “ Aero Engine Compressor Fouling Effects for Short- and Long-Haul Missions,” Proc. Inst. Mech. Eng. Part G, 230(7), pp. 1312–1324. [CrossRef]
Syverud, E. , Brekke, O. , and Bakken, L. , 2007, “ Axial Compressor Deterioration Caused by Saltwater Ingestion,” ASME J. Turbomach., 129(1), pp. 119–126. [CrossRef]
Tarabrin, A. P. , Schurovsky, V. A. , Bodrov, A. I. , and Stalder, J.-P. , 1998, “ Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters,” ASME Paper No. 98-GT-416.
Giesecke, D. , Igie, U. , Pilidis, P. , Ramsden, K. , and Lambart, P. , 2012, “ Performance and Techno-Economic Investigation of On-Wing Compressor Wash for a Short-Range Aero Engine,” ASME Paper No. GT2012-68995.
Döring, F. , Staudacher, S. , Koch, C. , and Weißschuh, M. , 2016, “ Modeling Particle Deposition Effects in Aircraft Engine Compressors,” ASME J. Turbomach., 139(5), p. 051003. [CrossRef]
Kurz, R. , Musgrove, G. , and Brun, K. , 2016, “ Experimental Evaluation of Compressor Blade Fouling,” ASME J. Eng. Gas Turbines Power, 139(3), p. 032601. [CrossRef]
Lockheed, 1986, “ Engine Compressor Washing,” Service News, 13(4), p. 3.
Rolls-Royce, 2017, “ Engine Health Management,” Rolls-Royce, Westhampnett, UK, accessed Jan. 29, 2017, http://www.rolls-royce.com/about/our-technology/enabling-technologies/engine-health-management.aspx
Igie, U. , Diez-Gonzalez, P. , Giraud, A. , and Minervino, O. , 2016, “ Evaluating Gas Turbine Performance Using Machine-Generated Data: Quantifying Degradation and Impacts of Compressor Washing,” ASME J. Eng. Gas Turbines Power, 138(12), p. 122601. [CrossRef]
Aretakis, N. , Roumeliotis, I. , Alexiou, A. , Romesis, C. , and Mathioudakis, K. , 2014, “ Turbofan Engine Health Assessment From Flight Data,” ASME J. Eng. Gas Turbines Power, 137(4), p. 041203. [CrossRef]
Gordon, R. , 2010, “ The Evolution of Gas Turbine Compressor Cleaning,” IDGTE J. Power Eng., 14(3), pp. 5–10.
Boyce, M. , and Gonzalez, F. , 2005, “ A Study of On-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine,” ASME J. Eng. Gas Turbines Power, 129(1), pp. 114–122. [CrossRef]
Boyce, M. , and Latcovich, J. , 2002, “ Condition Monitoring and Its Effects on the Life of New Advanced Gas Turbines,” ASME-IGTI Global Gas Turbine News, 42(3), p. 32.
Thames, J. M. , Stegmaier, J. W. , and Ford, J. J. , 1989, “ On-Line Compressor Washing Practices and Benefits,” ASME Paper No. 89-GT-91.
Gera, M. , 2010, “ Advanced Compressor Cleaning System for Siemens Gas Turbines,” Siemens AG, Munich, Germany, accessed Jan. 29, 2017, http://m.energy.siemens.com/hq/pool/hq/energy-topics/technical-papers/Advanced_Compressor_Cleaning_for_Gas_Turbines.pdf
Roumeliotis, I. , and Mathioudakis, K. , 2006, “ Water Injection Effects on Compressor Stage Operation,” ASME J. Eng. Gas Turbines Power, 129(3), pp. 778–784. [CrossRef]
ZOK, 2017, “ What Can Be Used to the Wash the Compressor?,” ZOK International, West Sussex, UK, accessed Jan. 29, 2017, https://www.zok.com/faq/what_can_be_used_to_the_wash_the_compressor/
Syverud, E. , and Bakken, L. , 2007, “ Online Water Wash Tests of GE J85-13,” ASME J. Turbomach., 129(1), pp. 136–142. [CrossRef]
Igie, U. , Pilidis, P. , Fouflias, D. , Ramsden, K. , and Laskaridis, P. , 2014, “ Industrial Gas Turbine Performance: Compressor Fouling and On-Line Washing,” ASME J. Turbomach., 136(10), p. 101001. [CrossRef]
Rocchi, M. , 2007, “ CFD Aerodynamic Investigation of On-Line Compressor Washing Operations,” Master's thesis, Cranfield University, Cranfield, UK.
Bromley, A. F. , and Meher-Homji, C. B. , 2004, “ Gain a Competitive Edge With a Better Understanding of GT Compressor Fouling, Washing,” Comb. Cycle J., Fourth Quarter, pp. 37–41. http://www.turbotect.ru/website/turbotect/upload/custom/files/lib/CC-Article-Combined-Cycle-Journal-2004.pdf
DrDust, 2004, “ Spray Nozzles,” National Environmental Service Company, Mendham, NJ, accessed May, 9, 2017, http://www.drdust.com/spray_nozzles.htm
Noznet, 2011, “ Broadening the Knowledge Base: Nozzle Performance,” Nozzle Network Co., Ltd., Tamba, Japan, accessed May, 9. 2017, http://www.nozzle-network.com/knowledge/know_practical_7.html
Agbadede, R. , Pilidis, P. , Igie, U. L. , and Allison, I. , 2015, “ Experimental and Theoretical Investigation of the Influence of Liquid Droplet Size on Effectiveness of Online Compressor Cleaning for Industrial Gas Turbines,” J. Energy Inst., 88(4), pp. 414–424. [CrossRef]
Fouflias, D. , 2009, “ An Experimental and Computational Analysis of Compressor Cascades With Varying Surface Roughness,” Ph.D. thesis, Cranfield University, Cranfield, UK. https://dspace.lib.cranfield.ac.uk/handle/1826/7029
Brun, K. , Foiles, W. C. , Grimley, T. A. , and Kurz, R. , 2015, “ Experimental Evaluation of the Effectiveness of Online Water-Washing in Gas Turbine Compressors,” ASME J. Eng. Gas Turbines Power, 137(4), p. 042605. [CrossRef]
Suder, K. L. , Chima, R. V. , Strazisar, A. J. , and Roberts, W. B. , 1995, “ The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor,” ASME J. Turbomach., 117(4), pp. 491–505. [CrossRef]
Gbadebo, S. A. , Hynes, T. P. , and Cumpsty, N. A. , 2004, “ Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors,” ASME J. Turbomach., 126(4), pp. 455–463. [CrossRef]
Fouflias, D. , Gannan, A. , Ramsden, K. , Pilidis, P. , Mba, D. , Teixeira, J. , Igie, U. , and Lambart, P. , 2010, “ Experimental Investigation of the Influence of Fouling on Compressor Cascade Characteristics and Implications for Gas Turbine Engine Performance,” Proc. Inst. Mech. Eng. Part J, 224(7), p. 1007. [CrossRef]
Tabakoff, W. , and Balan, C. , 1982, “ Compressor Cascade Performance Deterioration Caused by Sand Ingestion,” University of Cincinnati, Cincinnati, OH, NASA Technical Report No. NASA-CR-168067. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830008015.pdf
Vigueras-Zuniga, M. O. , 2007, “ Analysis of Gas Turbine Compressor Fouling and Washing On-Line,” Ph.D. thesis, Cranfield University, Cranfield, UK. https://dspace.lib.cranfield.ac.uk/handle/1826/2448
Igie, U. , Pilidis, P. , Fouflias, D. , Ramsden, K. , and Lambart, P. , 2011, “ A Method to Determine the Effectiveness of Detergents for Gas Turbine On-Line Compressor Washing,” The 20th International Symposium on Air Breathing Engines (ISABE), Gothenburg, Sweden, Sept. 12–16, Paper No. ISABE-2011-1204.
Suman, A. , Morini, M. , Kurz, R. , Aldi, N. , Brun, K. , Pinelli, M. , and Spina, P. R. , 2016, “ Estimation of the Particle Deposition on A Subsonic Axial Compressor Blade,” ASME J. Eng. Gas Turbines Power, 139(1), p. 012604. [CrossRef]
Saxena, S. , Jothiprasad, G. , Bourassa, C. , and Pritchard, B. , 2016, “ Numerical Simulation of Particulates in Multi-Stage Axial Compressors,” ASME J. Turbomach., 139(3), p. 031013. [CrossRef]
Casari, N. , Pinelli, M. , Suman, A. , di Mare, L. , and Montomoli, F. , 2016, “ An Energy Based Fouling Model for Gas Turbines: EBFOG,” ASME J. Turbomach., 139(2), p. 021002. [CrossRef]
Morini, M. , Pinelli, M. , Spina, P. R. , and Venturini, M. , 2011, “ Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance,” ASME J. Eng. Gas Turbines Power, 133(7), p. 072402. [CrossRef]
Morini, M. , Pinelli, M. , Spina, P. R. , and Venturini, M. , 2009, “ Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages,” ASME J. Eng. Gas Turbines Power, 132(7), p. 072401. [CrossRef]
Bouris, D. , Kubo, R. , Hirata, H. , and Nakata, Y. , 2002, “ Numerical Comparative Study of Compressor Rotor and Stator Blade Deposition Rates,” ASME J. Eng. Gas Turbines Power, 124(3), pp. 608–616. [CrossRef]
Sauniere, H. , 2011, “ Mechanisms of Fouling on a Numerical Single Stage Compressor Model,” Master's thesis, Cranfield University, Cranfield, UK.
Borello, D. , Rispoli, F. , and Venturini, P. , 2012, “ An Integrated Particle-Tracking Impact/Adhesion Model for the Prediction of Fouling in a Subsonic Compressor,” ASME J. Eng. Gas Turbines Power, 134(9), p. 092002. [CrossRef]
Aldi, N. , Morini, M. , Pinelli, M. , Spina, P. R. , and Suman, A. , 2016, “ An Innovative Method for the Evaluation of Particle Deposition Accounting for Rotor/Stator Interaction,” ASME J. Eng. Gas Turbines Power, 139(5), p. 052401. [CrossRef]
Suman, A. , Morini, M. , Kurz, R. , Aldi, N. , Brun, K. , Pinelli, M. , and Spina, P. R. , 2015, “ Estimation of the Particle Deposition on a Transonic Axial Compressor Blade,” ASME J. Eng. Gas Turbines Power, 138(1), p. 012604. [CrossRef]
El-Batsh, H. , 2001, “ Modeling Particle Deposition on Compressor and Turbine Blade Surfaces,” Ph.D. thesis, Vienna University of Technology, Wien, Austria. https://www.researchgate.net/publication/242189174_MODELING_PARTICLE_DEPOSITION_ON_COMPRESSOR_AND_TURBINE_BLADE_SURFACES
Schneider, E. , Demircioglu Bussjaeger, S. , Franco, S. , and Therkorn, D. , 2009, “ Analysis of Compressor On-Line Washing to Optimize Gas Turbine Power Plant Performance,” ASME J. Eng. Gas Turbines Power, 132(9), p. 062001.
Leusden, C. P. , Sorgenfrey, C. , and Dümmel, L. , 2004, “ Performance Benefits Using Siemens Advanced Compressor Cleaning System,” ASME J. Eng. Gas Turbines Power, 126(4), pp. 763–769. [CrossRef]
Kurz, R. , and Brun, K. , 2000, “ Degradation in Gas Turbine Systems,” ASME J. Eng. Gas Turbines Power, 123(1), pp. 70–77. [CrossRef]
Mohammadi, E. , and Montazeri-Gh, M. , 2014, “ Simulation of Full and Part-Load Performance Deterioration of Industrial Two-Shaft Gas Turbine,” ASME J. Eng. Gas Turbines Power, 136(9), p. 092602. [CrossRef]
Seddigh, F. , and Saravanamuttoo, H. I. H. , 1991, “ A Proposed Method for Assessing the Susceptibility of Axial Compressors to Fouling,” ASME J. Eng. Gas Turbines Power, 113(4), pp. 595–601. [CrossRef]
Tarabrin, A. P. , Schurovsky, V. A. , Bodrov, A. I. , and Stalder, J.-P. ,1998, “ An Analysis of Axial Compressor Fouling and a Blade Cleaning Method,” ASME J. Turbomach., 20(2), pp. 256–261. [CrossRef]
Meher-Homji, C. B. , Chaker, M. , and Bromley, A. F. , 2009, “ The Fouling of Axial Flow Compressors—Causes, Effects, Susceptibility, and Sensitivity,” ASME Paper No. GT2009-59239.
Zaba, T. , 1980, “ Losses in Gas Turbine Due to Deposits on the Blading,” Brown Boveri Rev., 67(12), pp. 715–722.
Aker, G. F. , and Saravanamuttoo, H. I. H. , 1989, “ Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Techniques,” ASME J. Eng. Gas Turbines Power, 111(2), pp. 343–350. [CrossRef]
Li, Y. G. , 2002, “ Performance-Analysis-Based Gas Turbine Diagnostics: A Review,” Proc. Inst. Mech. Eng. Part J, 216(5), pp. 363–377. [CrossRef]
Marinai, L. , Probert, D. , and Singh, R. , 2004, “ Prospects for Aero Gas-Turbine Diagnostics: A Review,” Appl. Energy, 79(1), pp. 109–126. [CrossRef]
Kurz, R. , Brun, K. , and Wollie, M. , 2009, “ Degradation Effects on Industrial Gas Turbines,” ASME J. Eng. Gas Turbines Power, 131(6), p. 062401. [CrossRef]
Zwebek, A. I. , and Pilidis, P. , 2003, “ Degradation Effects on Combined Cycle Power Plant Performance—Part I: Gas Turbine Cycle Component Degradation Effects,” ASME J. Eng. Gas Turbines Power, 125(3), pp. 651–657. [CrossRef]
Zwebek, A. I. , and Pilidis, P. , 2003, “ Degradation Effects on Combined Cycle Power Plant Performance—Part II: Steam Turbine Cycle Component Degradation Effects,” ASME J. Eng. Gas Turbines Power, 125(3), pp. 658–663. [CrossRef]
Zwebek, A. I. , and Pilidis, P. , 2004, “ Degradation Effects on Combined Cycle Power Plant Performance—Part III: Gas and Steam Turbine Component Degradation Effects,” ASME J. Eng. Gas Turbines Power, 126(2), pp. 306–315. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Satellite view of Queen Alia International Airport [4]

Grahic Jump Location
Fig. 2

Satellite view of Hong Kong International Airport [5]

Grahic Jump Location
Fig. 3

Example of on-wing compressor washing

Grahic Jump Location
Fig. 4

Engine health monitoring sensor locations and parameters [14]

Grahic Jump Location
Fig. 5

Fouled rotor blades of heavy-duty engine compressor

Grahic Jump Location
Fig. 6

Compressor washing spray injection with nozzle at the plenum [21]

Grahic Jump Location
Fig. 7

Compressor washing system

Grahic Jump Location
Fig. 8

Foulant deposition on compressor stators—fouled and washed compressor stages [24]

Grahic Jump Location
Fig. 9

Effect of fouling on engine performance for various individual stage fouling [25]

Grahic Jump Location
Fig. 10

Influence of droplet size on streamlines [26]: (a) 5 μm size, (b) 10 μm size, and (c) 300 μm size

Grahic Jump Location
Fig. 11

Depiction of flat fan nozzle—top [28] and spray—bottom [29]

Grahic Jump Location
Fig. 12

CFD model of on-line washing [31]

Grahic Jump Location
Fig. 13

Wind tunnel compressor cascade rig [25]

Grahic Jump Location
Fig. 14

Blade pressure side using fluid A and B, respectively [38]

Grahic Jump Location
Fig. 15

Pressure ratio versus mass flow (smooth stage, rough stator, rough rotor, and rough stage) [42]

Grahic Jump Location
Fig. 16

Isolated rotor and stator—pressure and suction side particle depositions [47]

Grahic Jump Location
Fig. 17

Modified meshes to account for fouling change in geometry [49]

Grahic Jump Location
Fig. 18

Engine power degradation with time [15]

Grahic Jump Location
Fig. 19

Changes in pressure ratio of compressor stages due to front stage fouling [25]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In