0
Research Papers: Gas Turbines: Turbomachinery

Three-Dimensional Aerodynamic Analysis of a Darrieus Wind Turbine Blade Using Computational Fluid Dynamics and Lifting Line Theory

[+] Author and Article Information
Francesco Balduzzi

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: balduzzi@vega.de.unifi.it

David Marten

Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: david.marten@tu-berlin.de

Alessandro Bianchini

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: bianchini@vega.de.unifi.it

Jernej Drofelnik

School of Engineering,
University of Glasgow,
James Watt Building South,
University Avenue,
Glasgow G12 8QQ, UK
e-mail: j.drofelnik.1@research.gla.ac.uk

Lorenzo Ferrari

Department of Energy, Systems, Territory
and Construction Engineering,
University of Pisa,
Largo Lucio Lazzarino,
Pisa 56122, Italy
e-mail: lorenzo.ferrari@unipi.it

Michele Sergio Campobasso

Department of Engineering,
Lancaster University,
Gillow Avenue,
Lancaster LA1 4YW, UK
e-mail: m.s.campobasso@lancaster.ac.uk

Georgios Pechlivanoglou

Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8, Berlin 10623, Germany
e-mail: george@pechlivanoglou.com

Christian Navid Nayeri

Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: christian.nayeri@tu-berlin.de

Giovanni Ferrara

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: giovanni.ferrara@unifi.it

Christian Oliver Paschereit

Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: oliver.paschereit@tu-berlin.de

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 5, 2017; final manuscript received July 19, 2017; published online October 3, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 140(2), 022602 (Oct 03, 2017) (11 pages) Paper No: GTP-17-1285; doi: 10.1115/1.4037750 History: Received July 05, 2017; Revised July 19, 2017

Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier–Stokes (NS) computational fluid dynamics (CFD) now offers a cost-effective, versatile, and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional (3D) NS simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the 3D unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was paid to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the lifting line free vortex wake model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models, and as the wake is explicitly resolved in contrast to blade element momentum (BEM)-based methods, LLFVW analyses provide 3D flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Paraschivoiu, I. , 2002, Wind Turbine Design With Emphasis on Darrieus Concept, Polytechnic International Press, Montreal, QC, Canada.
Mohamed, M. H. , 2014, “ Aero-Acoustics Noise Evaluation of H-Rotor Darrieus Wind Turbines,” Energy, 65(1), pp. 596–604. [CrossRef]
Balduzzi, F. , Bianchini, A. , Carnevale, E. A. , Ferrari, L. , and Magnani, S. , 2012, “ Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building,” Appl. Energy, 97, pp. 921–929. [CrossRef]
Bianchini, A. , Ferrari, L. , and Magnani, S. , 2012, “ Energy-Yield-Based Optimization of an H-Darrieus Wind Turbine,” ASME Paper No. GT2012-69892.
Marten, D. , Bianchini, A. , Pechlivanoglou, G. , Balduzzi, F. , Nayeri, C. N. , Ferrara, G. , Paschereit, C. O. , and Ferrari, L. , 2016, “ Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbines Performance,” ASME J. Eng. Gas Turbines Power, 139(2), p. 022606. [CrossRef]
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. D. , and Paschereit, C. O. , 2016, “ Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, HI, Apr. 10–15, pp. 1–7.
Dossena, V. , Persico, G. , Paradiso, B. , Battisti, L. , Dell'Anna, S. , Brighenti, A. , and Benini, E. , 2015, “ An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in Confined and Non-Confined Environment,” ASME Paper No. GT2015-42827.
Bachant, P. , and Wosnik, M. , 2015, “ Characterising the Near-Wake of a Cross-Flow Turbine,” J. Turbul., 16(4), pp. 392–410. [CrossRef]
Bianchini, A. , Balduzzi, F. , Bachant, P. , Ferrara, G. , and Ferrari, L. , 2017, “ Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment,” Energy Convers. Manage., 136, pp. 318–328. [CrossRef]
Balduzzi, F. , Bianchini, A. , Maleci, R. , Ferrara, G. , and Ferrari, L. , 2016, “ Critical Issues in the CFD Simulation of Darrieus Wind Turbines,” Renewable Energy, 85(1), pp. 419–435. [CrossRef]
Balduzzi, F. , Bianchini, A. , Ferrara, G. , and Ferrari, L. , 2016, “ Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines,” Energy, 97, pp. 246–261. [CrossRef]
Balduzzi, F. , Bianchini, A. , Gigante, F. A. , Ferrara, G. , Campobasso, M. S. , and Ferrari, L. , 2015, “ Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis,” ASME Paper No. GT2015-42663.
Lam, H. F. , and Peng, H. Y. , 2016, “ Study of Wake Characteristics of a Vertical Axis Wind Turbine by Two- and Three-Dimensional Computational Fluid Dynamics Simulations,” Renewable Energy, 90, pp. 386–398. [CrossRef]
Raciti Castelli, M. , Pavesi, G. , Battisti, L. , Benini, E. , and Ardizzon, G. , 2010, “ Modeling Strategy and Numerical Validation for a Darrieus Vertical Axis Micro-Wind Turbine,” ASME Paper No. IMECE2010-39548.
Untaroiu, A. , Wood, H. G. , Allaire, P. E. , and Ribando, R. J. , 2011, “ Investigation of Self-Starting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach,” ASME J. Solar Energy Eng., 133(4), p. 041010. [CrossRef]
Alaimo, A. , Esposito, A. , Messineo, A. , Orlando, C. , and Tumino, D. , 2015, “ 3D CFD Analysis of a Vertical Axis Wind Turbine,” Energies, 8(4), pp. 3013–3033. [CrossRef]
De Marco, A. , Coiro, D. P. , Cucco, D. , and Nicolosi, F. , 2014, “ A Numerical Study on a Vertical-Axis Wind Turbine With Inclined Arms,” Int. J. Aerosp. Eng., 2014, pp. 1–14. [CrossRef]
Raciti Castelli, M. , and Benini, E. , 2012, “ Effect of Blade Inclination Angle on a Darrieus Wind Turbine,” ASME J. Turbomach., 134(3), p. 031016. [CrossRef]
Orlandi, A. , Collu, M. , Zanforlin, S. , and Shires, A. , 2015, “ 3D URANS Analysis of a Vertical Axis Wind Turbine in Skewed Flows,” J. Wind Eng. Ind. Aerodyn., 147, pp. 77–84. [CrossRef]
Bianchini, A. , Balduzzi, F. , Ferrara, G. , Ferrari, L. , Persico, B. , Dossena, V. , and Battisti, L. , 2017, “ Detailed Analysis of the Wake Structure of a Straight-Blade H-Darrieus Wind Turbine by Means of Wind Tunnel Experiments and CFD Simulations,” ASME Paper No. GT2017-64733.
Bianchini, A. , Balduzzi, F. , Ferrara, G. , Ferrari, L. , Persico, B. , Dossena, V. , and Battisti, L. , 2017, “ A Combined Experimental and Numerical Analysis of the Wake Structure and Performance of a H-Shaped Darrieus Wind Turbine,” First GPPS Forum, Zürich, Switzerland, Jan. 16–18, pp. 1–8.
Menter, F. R. , 1994, “ Two-Equation Turbulence-Models for Engineering Applications,” AIAA J., 32(8), pp. 1598–1605. [CrossRef]
Campobasso, M. S. , Piskopakis, A. , Drofelnik, J. , and Jackson, A. , 2013, “ Turbulent Navier–Stokes Analysis of an Oscillating Wing in a Power Extraction Regime Using the Shear Stress Transport Turbulence Model,” Comput. Fluids, 88, pp. 136–155. [CrossRef]
Drofelnik, J. , and Campobasso, M. S. , 2016, “ Comparative Turbulent Three-Dimensional Navier–Stokes Hydrodynamic Analysis and Performance Assessment of Oscillating Wings for Renewable Energy Applications,” Int. J. Mar. Energy, 16, pp. 100–115. [CrossRef]
Campobasso, M. S. , Gigante, F. , and Drofelnik, J. , 2014, “ Turbulent Unsteady Flow Analysis of Horizontal Axis Wind Turbine Airfoil Aerodynamics Based on the Harmonic Balance Reynolds-Averaged Navier–Stokes Equations,” ASME Paper No. GT2014-25559.
Campobasso, M. S. , and Baba-Ahmadi, M. H. , 2012, “ Analysis of Unsteady Flows Past Horizontal Axis Wind Turbine Airfoils Based on Harmonic Balance Compressible Navier–Stokes Equations With Low-Speed Preconditioning,” ASME J. Turbomach., 134(6), p. 061020. [CrossRef]
Bianchini, A. , Balduzzi, F. , Ferrara, G. , and Ferrari, L. , 2017, “ Aerodynamics of Darrieus Wind Turbines Airfoils: The Impact of Pitching Moment,” ASME J. Eng. Gas Turbines Power, 139(4), p. 042602. [CrossRef]
Gigante, F. A. , Balduzzi, F. , Bianchini, A. , Minghan, Y. , Ferrara, G. , Campobasso, M. S. , and Ferrari, L. , 2017, “ Low-Speed Preconditioning for Strongly Coupled Integration of Reynolds-Averaged Navier-Stokes Equations and Two-Equation Turbulence Models,” Comput. Fluids (submitted).
Rainbird, J. , Bianchini, A. , Balduzzi, F. , Peiro, J. , Graham, J. M. R. , Ferrara, G. , and Ferrari, L. , 2015, “ On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines,” Energy Convers. Manage., 106, pp. 373–384. [CrossRef]
Campobasso, M. S. , Drofelnik, J. , and Gigante, F. , 2016, “ Comparative Assessment of the Harmonic Balance Navier–Stokes Technology for Horizontal and Vertical Axis Wind Turbine Aerodynamics,” Comput. Fluids, 136, pp. 354–370. [CrossRef]
The Hartree Centre, 2017, “ Hartree Centre,” The Hartree Centre, Warrington, UK, accessed May 10, 2016, http://community.hartree.stfc.ac.uk/wiki/site/admin/resources.html
Marten, D. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2010, “ Integration of a WT Blade Design Tool in XFOIL/XFLR5,” German Wind Energy Conference (DEWEK), Bremen, Germany, Nov. 17–18, pp. 1–4.
Marten, D. , Wendler, J. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2013, “ QBlade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines,” Int. J. Emerging Technol. Adv. Eng., 3(3), pp. 264–269.
Van Garrel, A. , 2003, Development of a Wind Turbine Aerodynamics Simulation Module, Energy Research Centre of the Netherlands, Petten, The Netherlands, Report No. ECN-C-01-099.
Marten, D. , 2016, “ QBlade Guidelines v0.95,” Technical University of Berlin, Berlin, Germany.
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. D. , and Paschereit, C. O. , 2015, “ Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade,” ASME J. Eng. Gas Turbines Power, 138(7), p. 072601. [CrossRef]
Marten, D. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2016, “ Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, HI, Apr. 10–15, pp. 1–7.
Bergami, L. , and Gaunaa, M. , 2012, “ ATEFlap Aerodynamic Model: A Dynamic Stall Model Including the Effects of Trailing Edge Flap Deflection,” Technical University of Denmark, Kongens Lyngby, Denmark, Report No. Risø-R-1792(EN).
Wendler, J. , Marten, D. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2016, “ An Unsteady Aerodynamics Model for Lifting Line Free Vortex Wake Simulations of HAWT and VAWT in QBlade,” ASME Paper No. GT2016-57184.
Bianchini, A. , Balduzzi, F. , Rainbird, J. , Peiro, J. , Graham, J. M. R. , Ferrara, G. , and Ferrari, L. , 2015, “ An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines. Part I—Flow Curvature Effects,” ASME J. Eng. Gas Turbines Power, 138(3), p. 032602. [CrossRef]
Drela, M. , and Giles, M. , 1989, “ Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils,” AIAA J., 25(10), pp. 1347–1355. [CrossRef]
Montgomerie, B. , 2004, “ Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to ±100 deg, With Application to Aerodynamics for Blades on Wind Turbines and Propellers,” FOI Swedish Defence Research Agency, Stockholm, Sweden, Report No. FOI-R-1035-SE.

Figures

Grahic Jump Location
Fig. 1

Power curve as a function of the TSR

Grahic Jump Location
Fig. 2

Computational domain

Grahic Jump Location
Fig. 3

Some details of the computational mesh

Grahic Jump Location
Fig. 4

Snapshot of the LLFVW simulation after 12 rotor revolutions

Grahic Jump Location
Fig. 5

Geometry of the virtual airfoil compensated for the virtual camber effect

Grahic Jump Location
Fig. 6

Lift polars of the virtual airfoil extrapolated with the Montgomerie method

Grahic Jump Location
Fig. 7

CFD moment coefficient versus azimuthal angle: variation at different span lengths

Grahic Jump Location
Fig. 8

LLFVW moment coefficient versus azimuthal angle: variation at different span lengths

Grahic Jump Location
Fig. 9

Skin friction lines on the blade suction surface at different azimuthal positions

Grahic Jump Location
Fig. 10

Moment coefficient versus azimuthal angle: 2D simulations compared to the average 3D profiles

Grahic Jump Location
Fig. 11

Planes used for the comparative analysis of velocity and vorticity contours

Grahic Jump Location
Fig. 12

Comparison of velocity contours between LLFVW (left) and CFD (right) on Y–Z planes at ϑ = 90 deg for different distances downstream of the axis

Grahic Jump Location
Fig. 13

Comparison of velocity contours between LLFVW (left) and CFD (right) on X–Y planes at ϑ = 90 deg for different span positions

Grahic Jump Location
Fig. 14

Comparison of Z-vorticity contours between LLFVW (left) and CFD (right) on X–Y planes at ϑ = 90 deg for different span positions

Grahic Jump Location
Fig. 15

Comparison of Y-vorticity contours between LLFVW (left) and CFD (right) on X–Z planes at ϑ = 90 deg for different lateral positions

Grahic Jump Location
Fig. 16

Comparison of velocity contours between LLFVW (left) and CFD (right) on X–Y planes at ϑ = 270 deg for different span positions

Grahic Jump Location
Fig. 17

Comparison of Z-vorticity contours between LLFVW (left) and CFD (right) on X–Y planes at ϑ = 270 deg for different span positions

Grahic Jump Location
Fig. 18

Average velocity profile comparison between LLFVW and CFD on X–Y planes at different span heights at X/D = 0 (a) and X/D = 1 (b)

Grahic Jump Location
Fig. 19

Relative error of average velocity predicted by CFD and LLFVW along the span height at X/D = 0 and X/D = 1

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In