0
Research Papers: Gas Turbines: Coal, Biomass, and Alternative Fuels

A Numerical Study of Ethanol–Water Droplet Evaporation

[+] Author and Article Information
Giandomenico Lupo

Department of Mechanics,
KTH Royal Institute of Technology,
Stockholm SE-100 44, Sweden
e-mail: gianlupo@mech.kth.se

Christophe Duwig

Department of Mechanics,
KTH Royal Institute of Technology,
Stockholm SE-100 44, Sweden

1Corresponding author.

Contributed by the Coal, Biomass and Alternate Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 7, 2017; final manuscript received July 12, 2017; published online October 3, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 140(2), 021401 (Oct 03, 2017) (9 pages) Paper No: GTP-17-1317; doi: 10.1115/1.4037753 History: Received July 07, 2017; Revised July 12, 2017

The present effort focuses on detailed numerical modeling of the evaporation of an ethanol–water droplet. The model intends to capture all relevant details of the process: it includes species and heat transport in the liquid and gas phases, and detailed thermophysical and transport properties, varying with both temperature and composition. Special attention is reserved to the composition range near and below the ethanol/water azeotrope point at ambient pressure. For this case, a significant fraction of the droplet lifetime exhibits evaporation dynamics similar to those of a pure droplet. The results are analyzed, and model simplifications are examined. In particular, the assumptions of constant liquid properties, homogeneous liquid phase composition and no differential volatility may not be valid depending on the initial droplet temperature.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Westbrook, C. K. , 2013, “ Biofuels Combustion,” Annu. Rev. Phys. Chem., 64(1), pp. 201–219. [CrossRef] [PubMed]
Lefebvre, A. H. , 1995, “ The Role of Fuel Preparation in Low-Emission Combustion,” ASME J. Eng. Gas Turbines Power, 117(4), pp. 617–654. [CrossRef]
Correa, S. M. , 1998, “ Power Generation and Aeropropulsion Gas Turbines: From Combustion Science to Combustion Technology,” Proc. Combust. Inst., 27(2), pp. 1793–1807. [CrossRef]
Nigam, P. S. , and Singh, A. , 2011, “ Production of Liquid Biofuels From Renewable Sources,” Prog. Energy Combust. Sci., 37(1), pp. 52–68. [CrossRef]
Sallevelt, J. L. H. , Pozarlik, A. K. , Beran, M. , Axelsson, L.-U. , and Brem, G. , 2014, “ Bioethanol Combustion in an Industrial Gas Turbine Combustor: Simulations and Experiments,” ASME J. Eng. Gas Turbines Power, 136(7), p. 071501. [CrossRef]
Madson, P. W. , and Monceaux, D. A. , 1999, Fuel Ethanol Production: The Alcohol Textbook: A Reference for the Beverage, Fuel and Industrial Alcohol Industries, K. A. Jacques, T. P. Lyons, and D. R. Kelsall, eds., Nottingham University Press, Nottingham, UK, Chap. 17.
Costa, R. C. , and Sodré, J. R. , 2010, “ Hydrous Ethanol vs. Gasoline-Ethanol Blend: Engine Performance and Emissions,” Fuel, 89(2), pp. 287–293. [CrossRef]
Eskin, L. D. , Molton, M. M. , Turner, B. A. , Joklik, R. G. , Klassen, M. S. , and Roby, R. G. , 2012, “ Long-Term Demonstration of a Lean, Premixed, Prevaporized (LPP) System for Gas Turbines,” ASME Paper No. ICONE20-POWER2012-54766.
Faeth, G. M. , 1977, “ Current Status of Droplet and Liquid Combustion,” Prog. Energy Combust. Sci., 3(4), pp. 191–224. [CrossRef]
Law, C. K. , 1982, “ Recent Advances in Droplet Vaporization and Combustion,” Prog. Energy Combust. Sci., 8(3), pp. 171–201. [CrossRef]
Sirignano, W. A. , 1983, “ Fuel Droplet Vaporization and Spray Combustion Theory,” Prog. Energy Combust. Sci., 9(4), pp. 291–322. [CrossRef]
Abramzon, B. , and Sirignano, W. A. , 1989, “ Droplet Vaporization Model for Spray Combustion Calculations,” Int. J. Heat Mass Transfer, 32(9), pp. 1605–1618. [CrossRef]
Aggarwal, S. K. , and Peng, F. , 1995, “ A Review of Droplet Dynamics and Vaporization Modeling for Engineering Calculations,” ASME J. Eng. Gas Turbines Power, 117(3), pp. 453–461. [CrossRef]
Sazhin, S. S. , 2006, “ Advanced Models of Fuel Droplet Heating and Evaporation,” Prog. Energy Combust. Sci., 32(2), pp. 162–214. [CrossRef]
Law, C. K. , and Law, H. K. , 1982, “ A d2-Law for Multicomponent Droplet Vaporization and Combustion,” AIAA J., 20(4), pp. 522–527. [CrossRef]
Mahiques, E. I. , Dederichs, S. , Beck, C. , Kaufmann, P. , and Kok, J. B. W. , 2017, “ Coupling Multicomponent Droplet Evaporation and Tabulated Chemistry Combustion Models for Large-Eddy Simulations,” Int. J. Heat Mass Transfer, 104, pp. 51–70. [CrossRef]
Darabiha, N. , Lacas, F. , Rolon, J. C. , and Candel, S. , 1993, “ Laminar Counterflow Spray Diffusion Flames: A Comparison Between Experimental Results and Complex Chemistry Calculations,” Combust. Flame, 95(3), pp. 261–275. [CrossRef]
Newbold, F. R. , and Amundson, N. R. , 1973, “ A Model for Evaporation of a Multicomponent Droplet,” AIChE J., 19(1), pp. 22–30. [CrossRef]
Kneer, R. , Schneider, M. , Noll, B. , and Wittig, S. , 1993, “ Effects of Variable Liquid Properties on Multicomponent Droplet Vaporization,” ASME J. Eng. Gas Turbines Power, 115(3), pp. 467–472. [CrossRef]
Bird, R. B. , Stewart, W. E. , and Lightfoot, E. N. , 2007, Transport Phenomena, Wiley, New York.
Continillo, G. , and Sirignano, W. A. , 1990, “ Counterflow Spray Combustion Modeling,” Combust. Flame, 81(3–4), pp. 325–340. [CrossRef]
Kee, R. J. , Yamashita, K. , Zhu, H. , and Dean, A. M. , 2011, “ The Effects of Liquid-Fuel Thermophysical Properties, Carrier-Gas Composition, and Pressure, on Strained Opposed-Flow Non-Premixed Flames,” Combust. Flame, 158(6), pp. 1129–1139. [CrossRef]
Alam, S. S. , Nizami, A. A. , and Aziz, T. , 2014, “ Single and Multicomponent Droplet Models for Spray Applications,” Am. J. Energy Eng., 2(5), pp. 108–126. [CrossRef]
Franzelli, B. , Fiorina, B. , and Darabiha, N. , 2013, “ A Tabulated Chemistry Method for Spray Combustion,” Proc. Combust. Inst., 34(1), pp. 1659–1666. [CrossRef]
Liñan, A. , Martínez-Ruiz, D. , Sánchez, A. L. , and Urzay, J. , 2015, “ Regimes of Spray Vaporization and Combustion in Counterflow Configurations,” Combust. Sci. Technol., 187(1–2), pp. 103–131. [CrossRef]
Hubbard, G. L. , Denny, V . E. , and Mills, A. F. , 1975, “ Droplet Evaporation: Effects of Transients and Variable Properties,” Int. J. Heat Mass Transfer, 18(9), pp. 1003–1008. [CrossRef]
Green, D. W. , and Perry, R. H. , 2007, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, Columbus, OH.
Khattab, I . S. , Bandarkar, F. , Fakhree, M. A. A. , and Jouyban, A. , 2012, “ Density, Viscosity, and Surface Tension of Water+Ethanol Mixtures From 293 to 323 K,” Korean J. Chem. Eng., 29(6), pp. 812–817. [CrossRef]
Yano, R. , Fukuda, Y. , and Hashi, T. , 1988, “ Thermal Conductivity Measurement of Water-Ethanol Solutions by the Laser-Induced Transient Grating Method,” Chem. Phys., 124(2), pp. 315–319. [CrossRef]
Larkin, J. A. , 1975, “ Thermodynamic Properties of Aqueous Non-Electrolyte Mixtures—I: Excess Enthalpy for Water + Ethanol 298.15 to 383.15 K,” J. Chem. Thermodyn., 7(2), pp. 137–148. [CrossRef]
Tyn, M. T. , and Calus, W. F. , 1975, “ Temperature and Concentration Dependence of Mutual Diffusion Coefficients of Some Binary Liquid Systems,” J. Chem. Eng. Data, 20(3), pp. 310–316. [CrossRef]
Poling, B. E. , Prausnitz, J. M. , and O’Connell, J. P. , 2000, The Properties of Gases and Liquids, McGraw-Hill, Columbus, OH.
Vignes, A. , 1966, “ Diffusion in Binary Solutions. Variation of Diffusion Coefficient With Composition,” Ind. Eng. Chem. Fundam., 5(2), pp. 189–199. [CrossRef]
Goodwin, D. G. , Moffat, H. K. , and Speth, R. L. , 2016, “ Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.2.1,” Cantera Developers, Warrenville, IL, accessed Sept. 4, 2017, http://www.cantera.org
Tonini, S. , and Cossali, G. E. , 2015, “ A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications,” Int. J. Therm. Sci., 89, pp. 245–253. [CrossRef]
Voutsas, E. C. , Pamouktsis, C. , Argyris, D. , and Pappa, G. D. , 2011, “ Measurements and Thermodynamic Modeling of the Ethanol-Water System With Emphasis to the Azeotropic Region,” Fluid Phase Equilibria, 308(1–2), pp. 135–141. [CrossRef]
matlab, 2016, “ Version 9.1.0 (R2016b),” The MathWorks, Inc., Natick, MA.
Yang, J.-R. , and Wong, S.-C. , 2001, “ On the Discrepancies Between Theoretical and Experimental Results for Microgravity Droplet Evaporation,” Int. J. Heat Mass Transfer, 44(23), pp. 4433–4443. [CrossRef]
Nomura, H. , Ujiie, Y. , Rath, H. J. , Sato, J. , and Kono, M. , 1996, “ Experimental Study on High-Pressure Droplet Evaporation Using Microgravity Conditions,” Proc. Combust. Inst., 26(1), pp. 1267–1273. [CrossRef]
Chauveau, C. , Halter, F. , Lalonde, A. , and Gökalp, I. , 2008, “ An Experimental Study on the Droplet Vaporization: Effects of Heat Conduction Through the Support Fiber,” 22nd European Conference on Liquid Atomization and Spray Systems, Lake Como, Italy, Sept. 8–10, Paper No. ILASS08-A.
Morin, C. , Chauveau, C. , and Gökalp, I. , 2000, “ Droplet Vaporisation Characteristics of Vegetable Oil Derived Biofuels at High Temperatures,” Exp. Therm. Fluid Sci., 21(1–3), pp. 41–50. [CrossRef]
Birouk, M. , 1996, “ Influence de la Turbulence Homogene et Isotrope sur la Vaporisation et la Combustion de Gouttes de Combustibles Liquides,” Ph.D. thesis, Université d'Orléans, Orléans, France.

Figures

Grahic Jump Location
Fig. 1

Sketch of the problem

Grahic Jump Location
Fig. 2

Profiles in the liquid and gas phase

Grahic Jump Location
Fig. 3

Time evolution of the normalized droplet surface area for a pure n-heptane droplet

Grahic Jump Location
Fig. 4

Time evolution of the normalized surface area, surface temperature and surface composition of a binary n-heptane–n-decane droplet

Grahic Jump Location
Fig. 5

Time evolution of the normalized droplet surface area for the ethanol–water droplet

Grahic Jump Location
Fig. 6

Time evolution of surface temperature, surface composition and mean composition for the ethanol–water droplet

Grahic Jump Location
Fig. 7

Time evolution of surface ethanol gas mole fraction and fractional evaporation rate for the ethanol–water droplet

Grahic Jump Location
Fig. 8

Time evolution of surface temperature and ethanol evaporation rate. Comparison between full and simplified model.

Grahic Jump Location
Fig. 9

Contributions to the surface rate of change

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In