0
Research Papers: Gas Turbines: Turbomachinery

Analysis of Water–Fuel Ratio Variation in a Gas Turbine With a Wet-Compressor System by Change in Fuel Composition

[+] Author and Article Information
Yonatan Cadavid

Grupo de Ciencia y Tecnología del Gas y Uso
Racional de la Energía,
Facultad de Ingeniería,
Universidad de Antioquia,
Calle 67 N° 53–108,
Bloque 19–000,
Medellín 050010, Colombia
e-mail: yonatan.cadavid@udea.edu.co

Andres Amell

Grupo de Ciencia y Tecnología del Gas y Uso
Racional de la Energía,
Facultad de Ingeniería,
Universidad de Antioquia,
Calle 67 N° 53–108,
Bloque 19–000,
Medellín 050010, Colombia
e-mail: andres.amell@udea.edu.co

Juan Alzate

Innovación y Desarrollo. Celsia S.A. E.S.P,
Carrera 43a No. 1a Sur-143. Piso 5,
Medellín 050022, Colombia
e-mail: jalzatev@celsia.com

Gerjan Bermejo

Operación. Celsia S.A. E.S.P,
Carrera 43a No. 1a Sur-143. Piso 5,
Medellín 050022, Colombia
e-mail: gbermejo@celsia.com

Gustavo A. Ebratt

Operación, ISAGEN,
Carrera 48 No. 26-85 Piso 1, torre sur,
Medellín 050021, Colombia
e-mail: gaebratt@yahoo.es

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received April 22, 2017; final manuscript received August 9, 2017; published online November 28, 2017. Assoc. Editor: Timothy J. Jacobs.

J. Eng. Gas Turbines Power 140(5), 052602 (Nov 28, 2017) (9 pages) Paper No: GTP-17-1148; doi: 10.1115/1.4038137 History: Received April 22, 2017; Revised August 09, 2017

The wet compressor (WC) has become a reliable way to reduce gas emissions and increase gas turbine efficiency. However, fuel source diversification in the short and medium terms presents a challenge for gas turbine operators to know how the WC will respond to changes in fuel composition. For this study, we assessed the operational data of two thermal power generators, with outputs of 610 MW and 300 MW, in Colombia. The purpose was to determine the maximum amount of water that can be added into a gas turbine with a WC system, as well as how the NOx/CO emissions vary due to changes in fuel composition. The combustion properties of different gaseous hydrocarbon mixtures at wet conditions did not vary significantly from each other—except for the laminar burning velocity. It was found that the fuel/air equivalence ratio in the turbine reduced with lower CH4 content in the fuel. Less water can be added to the turbine with leaner combustion; the water/fuel ratio was decreased over the range of 1.4–0.4 for the studied case. The limit is mainly due to a reduction in flame temperature and major risk of lean blowout (LBO) or dynamic instabilities. A hybrid reaction mechanism was created from GRI-MECH 3.0 and NGIII to model hydrocarbons up to C5 with NOx formation. The model was validated with experimental results published previously in literature. Finally, the effect of atmospheric water in the premixed combustion was analyzed and explained.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bracco, S. , Pierfederici, A. , and Trucco, A. , 2007, “ The Wet Compression Technology for Gas Turbine Power Plants: Thermodynamic Model,” Appl. Therm. Eng., 27(4), pp. 699–704. [CrossRef]
Siemens, 2017, “Siemens—Wet Compression,” Siemens AG, Munich, Germany, accessed Mar. 16, 2017, http://www.energy.siemens.com/ru/en/services/fossil-power-generation/modernization-upgrades/wet-compression.htm#content=GeneralProduct Information
Correa, S. M. , 1993, “ A Review of NOx Formation Under Gas-Turbine Combustion Conditions,” Combust. Sci. Technol., 87(1–6), pp. 329–362. [CrossRef]
Göke, S. , and Paschereit, C. O. , 2013, “ Influence of Steam Dilution on Nitrogen Oxide Formation in Premixed Methane/Hydrogen Flames,” J. Propul. Power, 29(1), pp. 249–260. [CrossRef]
Go¨ke, S. , Terhaar, S. , Schimek, S. , Go¨ckeler, K. , and Paschereit, C. O. , 2011, “Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions,” ASME Paper No. GT2011-45696.
Göke, S. , Albin, E. , Göckeler, K. , Krüger, O. , Schimek, S. , Terhaar, S. , and Paschereit, C. O. , 2012, “ Ultra-Wet Combustion for High Efficiency, Low Emission Gas Turbines,” Sixth International Gas Turbine Conference (IGTC), Brussels, Belgium, Oct. 17–18, Paper No. 17. http://fd.tu-berlin.de/fileadmin/publications/Goeke2012c.pdf
Jansohn, P. , 2013, Modern Gas Turbine Systems: High Efficiency, Low Emission, Fuel Flexible Power Generation, Woodhead Publishing, Cambridge, UK.
Wang, H. , 2015, “ Combustion Chemistry,” Princeton-CEFRC Summer School on Combustion (Lecture), Vol. 3, The Combustion Energy Frontier Research Center (CEFRC), Princeton, NJ.
Konnov, A. A. , 2009, “ Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism,” Combust. Flame, 156(11), pp. 2093–2105. [CrossRef]
Sutton, J. A. , and Fleming, J. W. , 2008, “ Towards Accurate Kinetic Modeling of Prompt NO Formation in Hydrocarbon Flames Via the NCN Pathway,” Combust. Flame, 154(3), pp. 630–636. [CrossRef]
Stathopoulos, P. , Kuhn, P. , Wendler, J. , Tanneberger, T. , Terhaar, S. , Paschereit, C. O. , Schmalhofer, C. , Griebel, P. , and Aigner, M. , 2016, “ Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure,” ASME J. Eng. Gas Turbines Power, 139(4), p. 041507. [CrossRef]
Pugh, D. G. , Bowen, P. J. , Marsh, R. , Crayford, A. P. , Runyon, J. , Morris, S. , Valera-Medina, A. , and Giles, A. , 2017, “ Dissociative Influence of H2O Vapour/Spray on Lean Blowoff and NOx Reduction for Heavily Carbonaceous Syngas Swirling Flames,” Combust. Flame, 177, pp. 37–48. [CrossRef]
Donato, N. , Aul, C. , Petersen, E. , Zinner, C. , Curran, H. , and Bourque, G. , 2010, “ Ignition and Oxidation of 50/50 Butane Isomer Blends,” ASME J. Eng. Gas Turbines Power, 132(5), p. 051502. [CrossRef]
Healy, D. , Donato, N. S. , Aul, C. J. , Petersen, E. L. , Zinner, C. M. , Bourque, G. , and Curran, H. J. , 2010, “ N-Butane: Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations,” Combust. Flame, 157(8), pp. 1526–1539. [CrossRef]
Healy, D. , Donato, N. S. , Aul, C. J. , Petersen, E. L. , Zinner, C. M. , Bourque, G. , and Curran, H. J. , 2010, “ Isobutane Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetic Simulations,” Combust. Flame, 157(8), pp. 1540–1551. [CrossRef]
Healy, D. , Kopp, M. M. , Polley, N. L. , Petersen, E. L. , Bourque, G. , and Curran, H. J. , 2010, “ Methane/N-Butane Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations,” Energy Fuels, 24(3), pp. 1617–1627. [CrossRef]
Healy, D. , Kalitan, D. M. , Aul, C. J. , Petersen, E. L. , Bourque, G. , and Curran, H. J. , 2010, “ Oxidation of C1−C5 Alkane Quinternary Natural Gas Mixtures at High Pressures,” Energy Fuels, 24(3), pp. 1521–1528. [CrossRef]
UC San Diego, 2014, “Chemical-Kinetic Mechanisms for Combustion Applications,” University of California, San Diego, CA, accessed Mar. 17, 2017, http://combustion.ucsd.edu
Taamallah, S. , Vogiatzaki, K. , Alzahrani, F. M. , Mokheimer, E. M. A. , Habib, M. A. , and Ghoniem, A. F. , 2015, “ Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations,” Appl. Energy, 154, pp. 1020–1047. [CrossRef]
UPME, 2015, “Balance de Gas Natural En Colombia 2015–2023,” Unidad de Planeación Minero Energética, Bogotá, Colombia, pp. 1–29.
Göke, S. , Schimek, S. , Terhaar, S. , Reichel, T. , Göckeler, K. , Krüger, O. , Fleck, J. , Griebel, P. , and Paschereit, C. O., 2014, “ Influence of Pressure and Steam Dilution on NOx and CO Emissions in a Premixed Natural Gas Flame,” ASME J. Eng. Gas Turbines Power, 136(9), p. 091508. [CrossRef]
Michaud, M. G. , Westmoreland, P. R. , and Feitelberg, A. S. , 1992, “ Chemical Mechanisms of NOx Formation for Gas Turbine Conditions,” Symp. (Int.) Combust., 24(1), pp. 879–887. [CrossRef]
Hoffmann, S. , Habisreuther, P. , and Lenze, B. , 1994, “ Development and Assessment of Correlations for Predicting Stability Limits of Swirling Flames,” Chem. Eng. Process., 33(5), pp. 393–400. [CrossRef]
Sébastien, D. , Schuller, T. , Durox, D. , and Candel, S. , 2003, “ Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms,” J. Propul. Power, 19(5), pp. 722–734. [CrossRef]
Benim, A. C. , Syed, K. J. , Benim, A. C. , and Syed, K. J. , 2015, Flashback Mechanisms in Lean Premixed Gas Turbine Combustion, Academic Press, Boston, MA.
De Paepe, W. , Sayad, P. , Bram, S. , Klingmann, J. , and Contino, F. , 2016, “ Experimental Investigation of the Effect of Steam Dilution on the Combustion of Methane for Humidified Micro Gas Turbine Applications,” Combust. Sci. Technol., 188(8), pp. 1199–1219. [CrossRef]
Smith, G. P. , Golden, D. M. , Frenklach, M. , Moriarty, N. W. , Eiteneer, B. , Goldenberg, M. , Bowman, C. T. , Ronald, K. , Hanson, S. S. , Gardiner , W. C., Jr. , Lissianski, V. , and Qin, Z. , 2000, “GRI-Mech Home Page,” Gas Technology Institute, Des Plaines, IL, accessed Feb. 9, 2017, http://combustion.berkeley.edu/gri-mech/
Wang, H. , Dames, E. , Sirjean, B. , Sheen, D. A. , Tangko, R. , Violi, A. , Lai, J. Y. W. , Egolfopoulos, F. N. , Davidson, D. F. , and Hanson, R. K. , 2010, “ A High-Temperature Chemical Kinetic Model of N-Alkane (Upto N-Dodecane), Cyclohexane, and Methyl-, Ethyl-, N-Propyl and N-Butyl-Cyclohexane Oxidation at High Temperatures,” JetSurF Version 2.0, Stanford University, Stanford, CA, p. 19.
Goswami, M. , Volkov, E. N. , Konnov, A. A. , Bastiaans, R. J. M. , and de Goey, L. P. H. , 2008, “Updated Kinetic Mechanism for NOx Prediction and Hydrogen Combustion,” Technische Universiteit Eindhoven, Eindhoven, The Netherlands, Technical Report No. FP7-ENERGY-2008-TREN-1. http://www.h2-igcc.eu/Pdf/WP1%201_Milestone2%202_TUe%20Report.pdf
Promigas, 2016, “Promigas Inicio,” Promigas, Barranquilla, Colombia, accessed June 1, 2016, http://www.promigas.com/Es/Paginas/Default.aspx
Andrews, G. E. , 2013, “ Ultra-Low Nitrogen Oxides (NOx) Emissions Combustion in Gas Turbine Systems,” Modern Gas Turbine Systems, Elsevier, Cambridge, UK, pp. 715–790. [CrossRef]
Amell, A. A. , and Cadavid, F. J. , 2002, “ Influence of the Relative Humidity on the Air Cooling Thermal Load in Gas Turbine Power Plant,” Appl. Therm. Eng., 22(13), pp. 1529–1533. [CrossRef]
Bhargava, A. , Kendrick, D. W. , Colket, M. B. , Sowa, W. A. , and Hartford, E. , 2000, “Pressure Effect on NOx and CO Emissions in Industrial Gas Turbines,” ASME Paper No. 2000-GT-0097.
Mazas, A. N. , Fiorina, B. , Lacoste, D. A. , and Schuller, T. , 2011, “ Effects of Water Vapor Addition on the Laminar Burning Velocity of Oxygen-Enriched Methane Flames,” Combust. Flame, 158(12), pp. 2428–2440. [CrossRef]
Albin, E. , Nawroth, H. , Göke, S. , D’Angelo, Y. , and Paschereit, C. O. , 2013, “ Experimental Investigation of Burning Velocities of Ultra-Wet Methane-Air-Steam Mixtures,” Fuel Process. Technol., 107, pp. 27–35. [CrossRef]
Kobayashi, H. , Yata, S. , Ichikawa, Y. , and Ogami, Y. , 2009, “ Dilution Effects of Superheated Water Vapor on Turbulent Premixed Flames at High Pressure and High Temperature,” Proc. Combust. Inst., 32(2), pp. 2607–2614. [CrossRef]
Zhang, H. , Zhang, X. , and Zhu, M. , 2012, “ Experimental Investigation of Thermoacoustic Instabilities for a Model Combustor With Varying Fuel Components,” ASME J. Eng. Gas Turbines Power, 134(3), p. 031504. [CrossRef]
Cabot, G. , Vauchelles, D. , Taupin, B. , and Boukhalfa, A. , 2004, “ Experimental Study of Lean Premixed Turbulent Combustion in a Scale Gas Turbine Chamber,” Exp. Therm. Fluid Sci., 28(7), pp. 683–690. [CrossRef]
Stadlmair, N. V. , and Sattelmayer, T. , 2016, “Measurement and Analysis of Flame Transfer Functions in a Lean-Premixed, Swirl-Stabilized Combustor With Water Injection,” AIAA Paper No. 2016-1157.

Figures

Grahic Jump Location
Fig. 1

Premix swirl burner and PSR reactors. Adapted from Refs. [5] and [25].

Grahic Jump Location
Fig. 2

Reactor network used in Chemkin 17

Grahic Jump Location
Fig. 3

NOx emission versus flame temperature at 9 bar and Ω = 0. Experimental data from Ref. [21].

Grahic Jump Location
Fig. 4

NOx emission versus flame temperature at 9 bar and Ω = 0.2. Experimental data from Ref. [21].

Grahic Jump Location
Fig. 5

NOx emission versus equivalence ratio at 10 bar, Ω = 0: (a) 100%CH4 and (b) 100%C2H6. Experimental data from Ref. [22].

Grahic Jump Location
Fig. 6

NOx emission versus equivalence ratio at 1 bar Ω = 0.2. Experimental data from Ref. [4].

Grahic Jump Location
Fig. 7

NOx emission versus equivalence ratio at 1 bar, Ω = 0.3. Experimental data from Ref. [4].

Grahic Jump Location
Fig. 8

NOx emission versus flame temperature at 4 bar, Ω = 0.1. Experimental data from Ref. [11].

Grahic Jump Location
Fig. 9

NOx emission versus flame temperature at 9 bar, Ω = 0.1. Experimental data from Ref. [11].

Grahic Jump Location
Fig. 10

(a) Fuel composition effect on thermal power and (b) fuel flow variation in a Westinghouse (Siemens) W501D5 gas turbine. Ambient temperature 28–34 °C, relative humidity 83%, atmospheric pressure 0.9 atm.

Grahic Jump Location
Fig. 11

Equivalence ratio change due to variation in fuel composition at constant fuel mass flow

Grahic Jump Location
Fig. 12

Size of a DLN combustor basket of a Westinghouse (Siemens) W501D5 gas turbine

Grahic Jump Location
Fig. 13

Simulated NOx emissions with respect to fuel composition and water–fuel ratio at ISO conditions and 29 °C, 81% HR, and 100 kPa

Grahic Jump Location
Fig. 14

Simulated CO emissions with respect to fuel composition and water–fuel ratio at ISO conditions and 29 °C, 81% HR, and 100 kPa

Grahic Jump Location
Fig. 15

Simulated NOx emissions at different equivalence ratios at 29 °C, 81% HR, and 100 kPa

Grahic Jump Location
Fig. 16

Simulated CO emission at different equivalence ratios at 29 °C, 81% HR, and 100 kPa

Grahic Jump Location
Fig. 17

Simulated flame temperature reduction at 29 °C, 81% HR, and 100 kPa

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In