0
Research Papers: Gas Turbines: Aircraft Engine

Plausibility Study of Hecto Pressure Ratio Concepts in Large Civil Aero-engines

[+] Author and Article Information
Felix Klein

Institute of Aircraft Propulsion Systems,
University of Stuttgart,
Pfaffenwaldring 6,
Stuttgart 70569, Germany
e-mail: felix.klein@ila.uni-stuttgart.de

Stephan Staudacher

Institute of Aircraft Propulsion Systems,
University of Stuttgart,
Pfaffenwaldring 6,
Stuttgart 70569, Germany
e-mail: stephan.staudacher@ila.uni-stuttgart.de

Contributed by the Aircraft Engine Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 4, 2017; final manuscript received August 8, 2017; published online November 21, 2017. Editor: David Wisler.

J. Eng. Gas Turbines Power 140(5), 051201 (Nov 21, 2017) (10 pages) Paper No: GTP-17-1275; doi: 10.1115/1.4038124 History: Received July 04, 2017; Revised August 08, 2017

Enabling high overall pressure ratios (OPR), wave rotors, and piston concepts (PCs) seem to be solutions surpassing gas turbine efficiency. Therefore, a comparison of a wave rotor and three PCs relative to a reference gas turbine is offered. The PPCs include a Wankel, a two-stroke reciprocating engine, and a free piston. All concepts are investigated with and without intercooling. An additional combustion chamber (CC) downstream the piston engine is investigated, too. The shaft power chosen corresponds to large civil turbofans. Relative to the reference gas turbine, a maximum efficiency increase of 11.2% for the PCs and 9.8% for the intercooled wave rotor is demonstrated. These improvements are contrasted by a 5.8% increase in the intercooled reference gas turbine and a 4.2% increase due to improved gas turbine component efficiencies. Intercooling the higher component efficiency gas turbine leads to a 9.8% efficiency increase. Furthermore, the study demonstrates the high difference between intercooler and piston engine weight and a conflict between PC efficiency and chamber volume, highlighting the need for extreme lightweight design in any piston engine solution. Improving piston engine technology parameters is demonstrated to lead to higher efficiency, but not to a chamber volume reduction. Heat loss in the piston engines is identified as the major efficiency limiter.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Teyssier, N. , 2012, “ Global Air Transport Outlook,” 37th FAA Aviation Forecast Conference, FAA, Washington, DC, Mar. 8–9.
IATA, 2013, “ Reducing Emissions From Aviation Through Carbon-Neutral Growth From 2020,” 38th International Civil Aviation Organization Assembly, Montreal, QC, Canada, Sept. 24–Oct. 4. http://www.atag.org/component/downloads/downloads/230.html
ACARE, 2011,” Flightpath 2050—Europe’s Vision for Aviation,” Report of the High Level Group on Aviation Research, European Commission, Brussels, Belgium, Report. https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
Kurzke, J. , 2009, “ Fundamental Differences Between Conventional and Geared Turbofans,” ASME Paper No. GT2009-59745.
Bellocq, P. , Garmendia, I. , and Sethi, V. , 2015, “ Preliminary Design Assessments of Pusher Geared Counter-Rotating Open Rotors—Part I: Low Pressure System Design Choices, Engine Preliminary Design Philosophy and Modelling Methodology,” ASME Paper No. GT2015-43812.
Bellocq, P. , Garmendia, I. , and Sethi, V. , 2015, “ Preliminary Design Assessments of Pusher Geared Counter-Rotating Open Rotors—Part II: Impact of Low Pressure System Design on Mission Fuel Burn, Certification Noise and Emissions,” ASME Paper No. GT2015-43816.
Van Zante, D. E. , 2015, “ Progress in Open Rotor Research: A U.S. Perspective,” ASME Paper No. GT2015-42203.
Bellocq, P. , Garmendia, I. , Sethi, V. , Patin, A. , Capodanno, S. , and Rodriguez Lucas, F. , 2016, “ Multidisciplinary Assessment of the Control of the Pusher Geared Open Rotor—Part I: Zero-Dimensional Performance Model for Counter-Rotating Propellers,” ASME J. Eng. Gas Turbines Power, 138(7), p. 072602. [CrossRef]
Bellocq, P. , Garmendia, I. , Sethi, V. , Patin, A. , Capodanno, S. , and Rodriguez Lucas, F. , 2016, “ Multidisciplinary Assessment of the Control of the Pusher Geared Open Rotor—Part II: Impact on Fuel Consumption, Engine Weight, Certification Noise, and NOx Emissions,” ASME J. Eng. Gas Turbines Power, 138(7), p. 072603. [CrossRef]
Steiner, H.-J. , Seitz, A. , Wieczorek, K. , Plötner, K. , Isikveren, A. , and Hornung, M. , 2012, “ Multi-Disciplinary Design and Feasibility Study of Distributed Propulsion Systems,” 28th International Congress of the Aeronautical Sciences (ICAS), Brisbane, Australia, Sept. 23–28. http://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/803.PDF
Laskaridis, P. , Valencia, E. , Kirner, R. , and Wei, T. J. , 2015, “ Assessment of Distributed Propulsion Systems Used With Different Aircraft Configurations,” AIAA Paper No. 2015-4029.
Wick, A. T. , Hooker, J. R. , and Hardin, C. J. , 2015, “ Integrated Aerodynamic Benefits of Distributed Propulsion,” AIAA Paper No. 2015-1500.
Hall, C. A. , and Crichton, D. , 2005, “ Engine and Installation Configurations for a Silent Aircraft,” 17th International Symposium on Air Breathing Engines (ISABE), Conference, ISABE, Munich, Germany, Paper No. ISABE-2005-1164. http://silentaircraft.org/object/download/1928/doc/ISABE_2005_1164.pdf
de la Rosa Blanco, E. , Hall, C. A. , and Crichton, D. , 2007, “ Challenges in the Silent Aircraft Engine Design,” AIAA Paper No. 2007-454.
Tong, M. T. , Jones, S. M. , and Haller, W. J. , 2009, ”Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft,” NASA Glenn Research Center, Cleveland, OH, Technical Report No. NASA/TM-2009-215680. https://ntrs.nasa.gov/search.jsp?R=20090042817
Casado, H. , Cristobal, E. , Lorido, A. , and Ramsden, K. W. , 2002, “ A Tip-Turbine Driven Propulsion Fan Concept,” ASME Paper No. GT2002-30651.
Laskaridis, P. , 2015, “ Application of Distributed Propulsion Concept on Different Aircraft Configurations,” 22nd International Symposium on Air Breathing Engines (ISABE), Phoenix, AZ, Oct. 25–30, Paper No. ISABE-2015-20284. https://drc.uc.edu/bitstream/handle/2374.UC/745829/ISABE2015_CS%26A_Panos%20Laskaridis_76_MANUSCRIPT_20284.pdf?sequence=2
Chengyuan, L. , Doulgeris, G. , Laskaridis, P. , and Singh, R. , 2012, “ Turboelectric Distributed Propulsion System Modelling for Hybrid-Wing-Body Aircraft,” AIAA Paper No. 2012-3700.
Stoll, A. M. , Bevirt, J. , Moore, M. D. , Fredericks, W. J. , and Borer, N. K. , 2014, “ Drag Reduction Through Distributed Electric Propulsion,” AIAA Paper No. 2014-2851.
Schmitz, O. , and Hornung, M. , 2013, “ Unified Applicable Propulsion System Performance Metrics,” ASME J. Eng. Gas Turbines Power, 135(11), p. 111201. [CrossRef]
McDonald, C. F. , Massardo, A. F. , Rodgers, C. , and Stone, A. , 2008, “ Recuperated Gas Turbine Aeroengines—Part I: Early Development Activities,” Aircr. Eng. Aerosp. Technol., 80(2), pp. 139–157. [CrossRef]
McDonald, C. F. , Massardo, A. F. , Rodgers, C. , and Stone, A. , 2008, “ Recuperated Gas Turbine Aeroengines—Part II: Enigne Design Studies following Early Development Testing,” Aircr. Eng. Aerosp. Technol., 80(3), pp. 280–294. [CrossRef]
McDonald, C. F. , Massardo, A. F. , Rodgers, C. , and Stone, A. , 2008, “ Recuperated Gas Turbine Aeroengines—Part III: Enigne Concepts for Reduced Emissions, Lower Fuel Consumption, and Noise Abatement,” Aircr. Eng. Aerosp. Technol., 80(4), pp. 408–426. [CrossRef]
Camilleri, W. , Anselmi, E. , Sethi, V. , Laskaridis, P. , Rolt, A. , and Cobas, P. , 2014, “ Performance Characteristics and Optimisation of a Geared Intercooled Reversed Flow Core Engine,” Proc. Inst. Mech. Eng., Part G, 229(2), pp. 269–279.
Kyprianidis, K. G. , Rolt, A. M. , and Grönstedt, T. , 2013, “ Multi-Disciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine,” ASME Paper No. GT2013-95474.
Kyprianidis, K. G. , and Rolt, A. M. , 2014, “ On the Optimisation of a Geared Fan Intercooled Core Engine Design,” ASME Paper No. GT2014-26064.
Kyprianidis, K. G. , and Rolt, A. M. , 2015, “ On the Optimization of a Geared Fan Intercooled Core Engine Design,” ASME J. Eng. Gas Turbines Power, 137(4), p. 041201. [CrossRef]
Zhao, X. , Thulin, O. , and Gronstedt, T. , 2015, “ First and Second Law Analysis of Intercooled Turbofan Engine,” ASME Paper No. GT2015-43187.
Boggia, S. , and Rüd, K. , 2005, “ Intercooled Recuperated Gas Turbine Engine Concept,” AIAA Paper No. 2005-4192.
Gonser, H. , 2008, ” Untersuchungen zum Einsatz von Wärmetauschern in zivilen Turboflugtriebwerken,” Ph.D. dissertation, Institute of Aircraft Propulsion Systems, University of Stuttgart, Stuttgart, Germany.
Lei, X. , Kyprianidis, K. , and Grönstedt, T. , 2011, “ Analysis of an Intercooled Recuperated Aero-Engine ,” 20th International Symposium on Air Breathing Engines (ISABE), Gothenburg, Sweden, Sept. 12–16, Paper No. ISABE-2011-1318. http://publications.lib.chalmers.se/publication/140734-analysis-of-an-intercooled-recuperated-aero-engine
Nalim, R. M. , 2002, “ Thermodynamic Limits of Work and Pressure Gain in Combustion and Evapuration Process,” J. Propul. Power, 18(6), pp. 1176–1182. [CrossRef]
Akbari, P. , Nalim, R. , and Mueller, N. , 2006, “ A Review of Wave Rotor Technology and Its Applications,” ASME J. Eng. Gas Turbines Power, 128(4), pp. 717–735. [CrossRef]
Snyder, P. H. , and Nalim, M. R. , 2012, “ Pressure Gain Combustion Application to Marine and Industrial Gas Turbines,” ASME Paper No. GT2012-69886.
Hutchins, T. E. , and Metghalchi, M. , 2003, “ Energy and Exergy Analyses of the Pulse Detonation Engine,” ASME J. Eng. Gas Turbines Power, 125(4), pp. 1075–1080. [CrossRef]
Goldmeer, J. , Tangirala, V. , and Dean, A. , 2008, “ System-Level Performance Estimation of a Pulse Detonation Based Hybrid Engine,” ASME J. Eng. Gas Turbines Power, 130(1), p. 011201. [CrossRef]
Schmidt, F. , Staudacher, S. , and Weigand, B. , 2013, “ Generalized Analysis of the Potential of Thermodynamic Cycles for Future Aircraft Propulsion Systems,” German Aerospace Congress, Stuttgart, Germany, Sept. 10–12, Paper No. DLRK2013-301350.
Grönstedt, T. , Irannezhad, M. , Lei, X. , Thulin, O. , and Lundbladh, A. , 2014, “ First and Second Law Analysis of Future Aircraft Engines,” ASME J. Eng. Gas Turbines Power, 136(3), p. 031202. [CrossRef]
Schmidt, F. , and Staudacher, S. , 2015, “ Generalized Thermodynamic Assessment of Concepts for Increasing the Efficiency of Civil Aircraft Propulsion Systems,” ASME Paper No. GT2015-42447.
Flight Global, 1954, “ Napier Nomad—An Engine of Outstanding Efficiency,” Flight Global, Sutton, UK, pp. 543–552.
Civinskas, K. C. , and Kraft, G. A. , 1976, ” Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. TM X-71906. https://ntrs.nasa.gov/search.jsp?R=19760014112
Castor, J. G. , 1983, “ Compound Cycle Turbofan Engine,” AIAA Paper No. 1983-1338.
Willis, E. A. , and Wintucky, W. T. , 1984, “ An Overview of NASA Intermittent Combustion Engine Research,” AIAA Paper No. 1984-1393.
Andre, W. L. , 1985, “ Aircraft Preliminary Design Comparison of Advanced Compound Engines With Advanced Turbine Engines for Helicopter Applications,” AIAA Paper No. 1985-1276.
Castor, J. , Martin, J. , and Bradley, C. , 1987, “ Compound Cycle Engine for Helicopter Application,” National Aeronautics and Space Administration, Cleveland, OH, Technical Report No. NASA-CR-180824. https://ntrs.nasa.gov/search.jsp?R=19930001160&hterms=Compound+Cycle+Engine+Helicopter+Application&qs=N%3D0%26Ntk%3DAll%26Ntt%3DCompound%2520Cycle%2520Engine%2520for%2520Helicopter%2520Application%26Ntx%3Dmode%2520matchallpartial
Bergbauer, F. , 1989, “ Verbesserung von Kraftstoffverbrauch und Betriebsverhalten von Verbrennungsmotoren durch Turbocompounding,” Ph.D. dissertation, Technical University of Munich, Munich, Germany.
Bues, J. , 1988, “ Thermodynamische Untersuchung zu Turbo-Compound-Verfahren,” VDI, Düsseldorf, Germany.
Whurr, J. , 1995, “ Aircraft Compound Cycle Propulsion Engine,” Rolls-Royce Plc, Westhampnett, UK, US Patent No. US5692372 A. https://www.google.co.in/patents/US5692372
Robinson, J. , 2006, “ Gasturbinentriebwerk,” MTU Aero Engines, Munich, Germany, Patent No. DE 10 2006 015 928 A1.
Klingels, H. , 2013, “ Wärmekraftmaschine mit Freikolbenverdichter,” MTU Aero Engines, Munich, Germany, Patent No. DE 10 2012 206 123 A1.
Gauvreau, J.-G. , and Gagnon-Martin, D. , 2013, “ Wankel Engine Rotor,” Pratt & Whitney Canada Corp., Longueuil, QC, Canada, Patent No. EP 2735701A1 https://encrypted.google.com/patents/EP2735701A1?cl=fi.
Panting, J. R. , and Pullen, K. R. , 2000, “ Thermodynamic Studies of a Novel Aeroengine Concept,” Proc. Inst. Mech. Eng., Part G, 214(2), pp. 71–83. [CrossRef]
Kaiser, S. , Seitz, A. , Donnerhack, S. , and Lundbladh, A. , 2015, “ A Composite Cycle Engine Concept With Hecto-Pressure Ratio,” AIAA Paper No. 2015-4028.
Nickl, M. , Kaiser, S. , Seitz, A. , and Hornung, M. , 2016, “ Performance Modeling of a Composite Cycle Engine With Rotary Engine,” German Aerospace Congress, Braunschweig, Germany, Paper No. DLRK2016_420144.
Berg, H. P. , Himmelberg, A. , Malenky, U. , Meincke, M. , and Soontornpasatch, T. , 2016, “ Hybrides Turbo Compound Fan Triebwerk,” German Aerospace Congress, Braunschweig, Germany, Paper No. DLRK2016-420246.
Watson, N. , and Janota, M. S. , 1982, Turbocharging the Internal Combustion Engine, 1st ed., MacMillan, London. [CrossRef]
Pucher, H. , and Zinner, K. , 2012, Aufladung Von Verbrennungsmotoren: Grundlagen, Berechnung, Ausführungen, 4th ed., Springer, Berlin. [CrossRef]
DLR, 2012, “ REXEL: Studie zu Range Extender Konzepten für den Einsatz in einem batterieelektrischen Fahrzeug,” DLR German Aerospace Center, Ministry of Finance and Economics Baden-Württemberg, Stuttgart, Germany.
Pischinger, R. , Klell, M. , and Sams, T. , 2009, Thermodynamik Der Verbrennungskraftmaschine, 3rd ed., Springer, Wien, Austria.
Keating, E. L. , 2007, Applied Combustion, CRC Press, Boca Raton, FL.
Roberts, J. M. , 1985, Heat Release Estimation and Prediction of Wankel Stratified-Charge Combustion Engine, Massachusetts Institute of Technology, Cambridge, MA.
VanGerpen, J. H. , 1990, “ A Two-Stroke Diesel Engine Simulation Program,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. ERI-89179. http://www.dtic.mil/dtic/tr/fulltext/u2/a220992.pdf
Horlock, J. H. , Watson, D. T. , and Jones, T. V. , 2001, “ Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows,” ASME J. Eng. Gas Turbines Power, 123(3), pp. 487–494. [CrossRef]
Staudacher, S. , 1995, “ Untersuchungen zum sekundären Luftsystem von Luftstrahltriebwerken,” Ph.D. dissertation, Technical University of Munich, Munich, Germany.
Sehra, A. K. , and Whitlow, W. J. , 2004, “ Propulsion and Power for the 21st Century Aviation,” Prog. Aerosp. Sci., 40(4–5), pp. 199–235. [CrossRef]
Grieb, H. , 2009, Verdichter Für Turbo-Flugtriebwerke, Springer, Berlin.
Mollenhauer, K. , ed., 2007, Handbuch Dieselmotoren, 3rd ed., Springer, Berlin.
Wu, Y. , Wang, Y. , Zhen, X. , Guan, S. , and Wang, J. , 2014, “ Three-Dimensional CFD (Computational Fluid Dynamics) Analysis of Scavenging Process in a Two-Stroke Free-Piston Engine,” J. Energy, 68, pp. 167–173. [CrossRef]
Küttner, K.-H. , 1992, Kolbenverdichter: Auslegung, Betrieb, Konstruktion, Springer, Berlin.
Mackerle, J. , 1972, Air-Cooled Automotive Engines, Charles Griffin & Company, London.
Walsh, P. P. , and Fletcher, P. , 1998, Gas Turbine Performance, 2nd ed., Blackwell Science, Oxford, UK.
Lechner, C. , and Seume, J. , 2010, Stationäre Gasturbinen, 2nd ed., Springer-Verlag, Berlin. [CrossRef]
Wankel SuperTec, 2017, “ Wankel Supertec Dieselmotor - KKM 500d,” Wankel SuperTec GmbH, Cottbus, Germany, accessed Oct. 27, 2017, http://www.wankelsupertec.de/pdfs/datasheets/KKM500_Datenblatt.pdf
Copeland, C. D. , Martinaz-Botas, R. , and Seiler, M. , 2011, “ Comparison Between Steady and Unsteady Double-Entry Turbine Performance Using the Quasi-Steady Assumption,” ASME J. Turbomach., 133(3), p. 031001. [CrossRef]
Copeland, C. D. , Martinaz-Botas, R. , and Seiler, M. , 2012, “ Unsteady Performance of a Double Entry Turbocharger Turbine With a Comparison to Steady Flow Conditions,” ASME J. Turbomach., 134(2), p. 021022. [CrossRef]
Snyder, P. H. , Elharis, T. M. , Wijeyakulasuriya, S. D. , Nalim, R. M. , Matsutomi, Y. , and Meyer, S. E. , 2011, “ Pressure Gain Combuster Component Viability Assessment Based on Initial Testing,” AIAA Paper No. 2011-5749.
Westmoreland, J. S. , and Stern, A. M. , 1978, “ Variable Cycle Engine Technology Program: Planning and Definition Study Final Report,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-CR-159539. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790014913.pdf

Figures

Grahic Jump Location
Fig. 1

Investigated concept architectures: (a) Gas Turbine, (b) Wave Rotor, (c) Wankel (turbo-compound), (d) Reciprocating Engine (turbo-compound), and (e) Free-Piston (composite cycle)

Grahic Jump Location
Fig. 2

Piston engine cooling

Grahic Jump Location
Fig. 3

Relative efficiency and specific net work

Grahic Jump Location
Fig. 4

Relative efficiency versus ΠLPC in relevant PCs

Grahic Jump Location
Fig. 5

Chamber volume versus ΠLPC in Wankel concepts

Grahic Jump Location
Fig. 6

Minimum chamber volume versus relative efficiency in Wankel concepts

Grahic Jump Location
Fig. 7

Effect of (a) intercooler exchange rate and (b) total pressure loss in intercooled Gas Turbine

Grahic Jump Location
Fig. 8

Effect of (a) intercooler exchange rate and (b) total pressure loss in intercooled Wave Rotor concept

Grahic Jump Location
Fig. 9

Effect of (a) mechanical efficiency, (b) heat loss, and (c) maximum cycle pressure in basic Wankel concepts

Grahic Jump Location
Fig. 10

Effect of (a) mechanical efficiency, (b) heat loss, and (c) maximum cycle pressure in CC Wankel concepts

Grahic Jump Location
Fig. 11

Effect of (a) mechanical efficiency, (b) heat loss, and (c) maximum cycle pressure in basic Reciprocating Engine concepts

Grahic Jump Location
Fig. 12

Effect of (a) trapping and (b) scavenging efficiency in basic Reciprocating Engine concepts

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In