Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber

[+] Author and Article Information
Tao Ren

School of Engineering,
University of California,
Merced, CA 95343
e-mail: tren@ucmerced.edu

Michael F. Modest

Life Fellow ASME
School of Engineering,
University of California,
Merced, CA 95343
e-mail: mmodest@ucmerced.edu

Somesh Roy

Mechanical Engineering Department,
Marquette University,
Milwaukee, WI 53233
e-mail: somesh.roy@marquette.edu

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received May 16, 2017; final manuscript received August 16, 2017; published online December 12, 2017. Assoc. Editor: Song-Charng Kong.

J. Eng. Gas Turbines Power 140(5), 051503 (Dec 12, 2017) (10 pages) Paper No: GTP-17-1170; doi: 10.1115/1.4038153 History: Received May 16, 2017; Revised August 16, 2017

Radiative heat transfer is studied numerically for reacting swirling flow in an industrial gas turbine burner operating at a pressure of 15 bar. The reacting field characteristics are computed by Reynolds-averaged Navier–Stokes (RANS) equations using the k-ϵ model with the partially stirred reactor (PaSR) combustion model. The GRI-Mech 2.11 mechanism, which includes nitrogen chemistry, is used to demonstrate the ability of reducing NOx emissions of the combustion system. A photon Monte Carlo (PMC) method coupled with a line-by-line (LBL) spectral model is employed to accurately account for the radiation effects. Optically thin (OT) and PMC–gray models are also employed to show the differences between the simplest radiative calculation models and the most accurate radiative calculation model, i.e., PMC–LBL, for the gas turbine burner. It was found that radiation does not significantly alter the temperature level as well as CO2 and H2O concentrations. However, it has significant impacts on the NOx levels at downstream locations.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Lefebvre, A. H. , 1984, “ Flame Radiation in Gas Turbine Combustion Chambers,” Int. J. Heat Mass Transfer, 27(9), pp. 1493–1510. [CrossRef]
Lefebvre, A. H. , and Ballal, D. R. , 2010, Gas Turbine Combustion: Alternative Fuels and Emissions, CRC Press, Boca Raton, FL. [CrossRef]
Huang, Y. , 2003, “ Modeling and Simulation of Combustion Dynamics in Lean-Premixed Swirl-Stabilized Gas-Turbine Engines,” Ph.D. thesis, The Pennsylvania State University, State College, PA. https://etda.libraries.psu.edu/catalog/6173
Weigand, P. , Meier, W. , Duan, X. R. , Stricker, W. , and Aigner, M. , 2006, “ Investigations of Swirl Flames in a Gas Turbine Model Combustor—I: Flow Field, Structures, Temperature, and Species Distributions,” Combust. Flame, 144(1), pp. 205–224. [CrossRef]
Meier, W. , Duan, X. R. , and Weigand, P. , 2006, “ Investigations of Swirl Flames in a Gas Turbine Model Combustor—II: Turbulence–Chemistry Interactions,” Combust. Flame, 144(1), pp. 225–236. [CrossRef]
Stopper, U. , Aigner, M. , Ax, H. , Meier, W. , Sadanandan, R. , Stöhr, M. , and Bonaldo, A. , 2010, “ PIV, 2D-LIF and 1D-Raman Measurements of Flow Field, Composition and Temperature in Premixed Gas Turbine Flames,” Exp. Therm. Fluid Sci., 34(3), pp. 396–403. [CrossRef]
Benini, E. , 2013, Progress in Gas Turbine Performance, InTech, Rijeka, Croatia. [CrossRef]
Mallampalli, H. P. , Fletcher, T. H. , and Chen, J. Y. , 1998, “ Evaluation of CH4/NOx Reduced Mechanisms Used for Modeling Lean Premixed Turbulent Combustion of Natural Gas,” ASME J. Eng. Gas Turbines Power, 120(4), pp. 703–712. [CrossRef]
Jones, W. P. , and Paul, M. C. , 2005, “ Combination of DOM with LES in a Gas Turbine Combustor,” Int. J. Eng. Sci., 43(5), pp. 379–397. [CrossRef]
Amaya, J. , Collado, E. , Cuenot, B. , and Poinsot, T. , 2010, “ Coupling LES, Radiation and Structure in Gas Turbine Simulations,” Summer Program of the Center for Turbulence Research, Stanford, CA, June 26–July 23. https://www.researchgate.net/publication/265407250_Coupling_LES_radiation_and_structure_in_gas_turbine_simulations
Joung, D. , and Huh, K. Y. , 2010, “ 3D RANS Simulation of Turbulent Flow and Combustion in a 5 MW Reverse-Flow Type Gas Turbine Combustor,” ASME J. Eng. Gas Turbines Power, 132(11), p. 111504. [CrossRef]
Gicquel, L. Y. , Staffelbach, G. , and Poinsot, T. , 2012, “ Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers,” Prog. Energy Combust. Sci., 38(6), pp. 782–817. [CrossRef]
Abou-Taouk, A. , Sadasivuni, S. , Lörstad, D. , and Eriksson, L. , 2013, “Evaluation of Global Mechanisms for LES Analysis of SGT-100 DLE Combustion System,” ASME Paper No. GT2013-95454.
Nemitallah, M. A. , and Habib, M. A. , 2013, “ Experimental and Numerical Investigations of an Atmospheric Diffusion Oxy-Combustion Flame in a Gas Turbine Model Combustor,” Appl. Energy, 111, pp. 401–415. [CrossRef]
Bulat, G. , Jones, W. P. , and Marquis, A. J. , 2013, “ Large Eddy Simulation of an Industrial Gas-Turbine Combustion Chamber Using the Sub-Grid PDF Method,” Proc. Combust. Inst., 34(2), pp. 3155–3164. [CrossRef]
Donini, A. A. , 2014, “ Advanced Turbulent Combustion Modeling for Gas Turbine Application,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands. http://repository.tue.nl/773140
Bulat, G. , Jones, W. P. , and Marquis, A. J. , 2014, “ NO and CO Formation in an Industrial Gas-Turbine Combustion Chamber Using LES With the Eulerian Sub-Grid PDF Method,” Combust. Flame, 161(7), pp. 1804–1825. [CrossRef]
Bulat, G. , Jones, W. P. , and Navarro-Martinez, S. , 2015, “ Large Eddy Simulations of Isothermal Confined Swirling Flow in an Industrial Gas-Turbine,” Int. J. Heat Fluid Flow, 51, pp. 50–64. [CrossRef]
Modest, M. F. , 2013, Radiative Heat Transfer, 3rd ed., Academic Press, New York.
Bulat, G. , Fedina, E. , Fureby, C. , Meier, W. , and Stopper, U. , 2015, “ Reacting Flow in an Industrial Gas Turbine Combustor: LES and Experimental Analysis,” Proc. Combust. Inst., 35(3), pp. 3175–3183. [CrossRef]
Karalus, M. F. , 2013, “ An Investigation of Lean Blowout of Gaseous Fuel Alternatives to Natural Gas,” Ph.D. thesis, University of Washington, Seattle, WA. https://digital.lib.washington.edu/researchworks/handle/1773/25166
Kadar, A. H. , 2015, “ Modelling Turbulent Non-Premixed Combustion in Industrial Furnaces,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands. https://repository.tudelft.nl/islandora/object/uuid%3A8f3235ea-6efa-466e-9e48-9eda89bb04e7
Cai, J. , Lei, S. , Dasgupta, A. , Modest, M. F. , and Haworth, D. C. , 2014, “ High Fidelity Radiative Heat Transfer Models for High-Pressure Laminar Hydrogen–Air Diffusion Flames,” Combust. Theory Modell., 18(6), pp. 607–626. [CrossRef]
Sun, L. , Zheng, Q. , Li, Y. , Luo, M. , and Bhargava, R. K. , 2012, “ Numerical Simulation of a Complete Gas Turbine Engine With Wet Compression,” ASME J. Eng. Gas Turbines Power, 135(1), p. 012002. [CrossRef]
Prieler, R. , Demuth, M. , Spoljaric, D. , and Hochenauer, C. , 2014, “ Evaluation of a Steady Flamelet Approach for Use in Oxy-Fuel Combustion,” Fuel, 118, pp. 55–68. [CrossRef]
Rajhi, M. A. , Ben-Mansour, R. , Habib, M. A. , Nemitallah, M. A. , and Andersson, K. , 2014, “ Evaluation of Gas Radiation Models in CFD Modeling of Oxy-Combustion,” Energy Convers. Manage., 81, pp. 83–97. [CrossRef]
Wang, A. , and Modest, M. F. , 2007, “ Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media,” Int. J. Heat Mass Transfer, 50(19–20), pp. 3877–3889. [CrossRef]
Ren, T. , and Modest, M. F. , 2013, “ Hybrid Wavenumber Selection Scheme for Line-by-Line Photon Monte Carlo Simulations in High-Temperature Gases,” ASME J. Heat Transfer, 135(8), p. 084501 [CrossRef]
Siemens AG, 2005, “SGT-100 Industrial Gas Turbine,” Siemens AG, Munich, Germany, accessed Oct. 13, 2017, https://www.siemens.com/global/en/home/products/energy/power-generation/gas-turbines/sgt-100.html#!/
Igoe, B. M. , 2011, “Dry Low Emissions Experience Across the Range of Siemens Small Industrial Gas Turbines,” Siemens Industrial Turbomachinery Limited, Lincoln, UK.
Stopper, U. , Meier, W. , Sadanandan, R. , Stöhr, M. , Aigner, M. , and Bulat, G. , 2013, “ Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape,” Combust. Flame, 160(10), pp. 2103–2118. [CrossRef]
Stopper, U. , Aigner, M. , Meier, W. , Sadanandan, R. , Stöhr, M. , and Kim, I. S. , 2009, “ Flow Field and Combustion Characterization of Premixed Gas Turbine Flames by Planar Laser Techniques,” ASME J. Eng. Gas Turbines Power, 131(2), p. 021504 [CrossRef]
Abou-Taouk, A. , Sadasivuni, S. , Lörstad, D. , Ghenadie, B. , and Eriksson, L. , 2015, “ CFD Analysis and Application of Dynamic Mode Decomposition for Resonant-Mode Identification and Damping in an SGT-100 DLE Combustion System,” Seventh European Combustion Meeting, Budapest, Hungary, Mar. 30–Apr. 2, Paper No. P4–46. https://www.researchgate.net/publication/274318069_CFD_analysis_and_application_of_dynamic_mode_decomposition_for_resonant-mode_identification_and_damping_in_an_SGT-100_DLE_combustion_system
Abou-Taouk, A. , Farcy, B. , Domingo, P. , Vervisch, L. , Sadasivuni, S. , and Eriksson, L.-E. , 2016, “ Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine,” Combust. Sci. Technol., 188(1), pp. 21–39. [CrossRef]
Bowman, C. T. , Hanson, R. K. , Davidson, D. F. , Gardiner, W. C. , Lissianski, V. , Smith, G. P. , Golden, D. M. , Frenklach, M. , and Goldenberg, M. , 1995, “GRI-Mech 2.11,” University of California, Berkeley, CA, accessed Oct. 13, 2017, http://www.me.berkeley.edu/gri_mech
Ren, T. , and Modest, M. F. , 2017, “ Line-by-Line Random-Number Database for Monte Carlo Simulations of Radiation in Combustion System,” ICHMT International Symposium on Advances in Computational Heat Transfer (CHT), Napoli, Italy, May 28–June 1, Paper No. CHT-17-69. http://www.dl.begellhouse.com/references/1bb331655c289a0a,2e54cab65583012c,04bbcd6c244681ac.html
Poinsot, T. , and Veynante, D. , 2005, Theoretical and Numerical Combustion, 2nd ed., R. T. Edwards , Philadelphia, PA.
Launder, B. E. , and Spalding, D. B. , 1974, “ The Numerical Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 3(2), pp. 269–289. [CrossRef]
Schmitt, F. G. , 2007, “ About Boussinesq's Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity,” C. R. Méc., 335(9), pp. 617–627. [CrossRef]
Versteeg, H. K. , and Malalasekera, W. , 2007, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, London.
Echekki, T. M. E. , 2010, Turbulent Combustion Modeling: Advances, New Trends and Perspectives, Vol. 95, Springer Science & Business Media, Berlin.
Tanahashi, M. , Fujimura, M. , and Miyauchi, T. , 2000, “ Coherent Fine-Scale Eddies in Turbulent Premixed Flames,” Proc. Combust. Inst., 28(1), pp. 529–535. [CrossRef]
Sabel'Nikov, V. A. , and da Silva, L. F. F. , 2002, “ Partially Stirred Reactor: Study of the Sensitivity of the Monte Carlo Simulation to the Number of Stochastic Particles With the Use of a Semi-Analytic, Steady-State, Solution to the PDF Equation,” Combust. Flame, 129(1), pp. 164–178. [CrossRef]
Sabelnikov, V. , and Fureby, C. , 2013, “ LES Combustion Modeling for High Re Flames Using a Multi-Phase Analogy,” Combust. Flame, 160(1), pp. 83–96. [CrossRef]
Kärrholm, P. F. , 2008, “ Numerical Modeling of Diesel Spray Injection, Turbulence Interaction and Combustion,” Ph.D. thesis, Chalmers University of Technology, Gothenburg, Sweden. http://powerlab.fsb.hr/ped/kturbo/Openfoam/docs/FabianPengKarrholmPhD2008.pdf
Rothman, L. S. , Gordon, I. E. , Barber, R. J. , Dothe, H. , Gamache, R. R. , Goldman, A. , Perevalov, V. I. , Tashkun, S. A. , and Tennyson, J. , 2010, “ HITEMP, the High-Temperature Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer, 111(15), pp. 2139–2150. [CrossRef]
Rothman, L. S. , Gordon, I. E. , Babikov, Y. , Barbe, A. , Benner, D. C. , Bernath, P. F. , Birk, M. , Bizzocchi, L. , Boudon, V. , Brown, L. R. , Campargue, A. , Chance, K. , Cohen, E. A. , Coudert, L. H. , Devi, V. M. , Drouin, B. J. , Fayt, A. , Flaud, J. M. , Gamache, R. R. , Harrison, J. J. , Hartmann, J. M. , Hill, C. , Hodges, J. T. , Jacquemart, D. , Jolly, A. , Lamouroux, J. , Le Roy, R. J. , Li, G. , Long, D. A. , Lyulin, O. M. , Mackie, C. J. , Massie, S. T. , Mikhailenko, S. , Müller, H. S. P. , Naumenko, O. V. , Nikitin, A. V. , Orphal, J. , Perevalov, V. , Perrin, A. , Polovtseva, E. R. , Richard, C. , Smith, M. A. H. , Starikova, E. , Sung, K. , Tashkun, S. , Tennyson, J. , Toon, G. C. , Tyuterev, VI. G. , and Wagner, G. , 2013, “ The HITRAN2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer, 130, pp. 4–50. [CrossRef]
OpenCFD, 2013, “Version2.2.x, OpenFOAM Website,” OpenCFD Ltd., Bracknell, UK, accessed Oct. 13, 2017, https://github.com/OpenFOAM/OpenFOAM-2.2.x
Bissel, D. , 1994, Statistical Methods for SPC and TQM, Chapman and Hall, New York. [CrossRef]
Feldick, A. M. , and Modest, M. F. , 2012, “ A Spectrally Accurate Tightly-Coupled 2-D Axisymmetric Photon Monte Carlo RTE Solver for Hypersonic Entry Flows,” ASME J. Heat Transfer, 134(12), p. 122701. [CrossRef]


Grahic Jump Location
Fig. 1

The industrial burner with combustion chamber of the SGT-100 [31]

Grahic Jump Location
Fig. 2

Computational mesh and boundaries for the gas turbine combustor

Grahic Jump Location
Fig. 3

The comparison of the axial velocity, temperature, and CO mass fraction distributions calculated with current mesh of approximately 15,000 cells and refined mesh of approximately 40,000 cells

Grahic Jump Location
Fig. 4

Steady-state mean velocity magnitude (m/s) superimposed with pseudo-streamlines, temperature (in kelvin), CO2, H2O, and CO mass fraction contours calculated with PMC–LBL radiation model for the gas turbine combustion burner

Grahic Jump Location
Fig. 5

Temperature (in kelvin) profiles calculated without radiation (NoRad) feedback, with OT, PMC-gray, and PMC–LBL radiation models for the gas turbine combustion

Grahic Jump Location
Fig. 6

Temperature (in kelvin) and NOx mass fraction near the gas turbine burner exit

Grahic Jump Location
Fig. 7

The mean mass fraction contours of OH calculated without radiation (NoRad) feedback and with PMC–LBL radiation for the gas turbine combustion burner

Grahic Jump Location
Fig. 8

Volume-averaged CO2, H2O, and CO mass fractions and volume-integrated enthalpy and in the computational domain

Grahic Jump Location
Fig. 9

The net radiative heat fluxes on the combustor walls



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In