Research Papers: Gas Turbines: Vehicular and Small Turbomachines

Variable Geometry Compressors for Heavy Duty Truck Engine Turbochargers

[+] Author and Article Information
Michael Wöhr

Daimler AG,
Heavy Duty Engine Development,
Stuttgart 70546, Germany
e-mail: michael.woehr@daimler.com

Markus Müller

Daimler AG,
Heavy Duty Engine Development,
Stuttgart 70546, Germany
e-mail: markus.mk.mueller@daimler.com

Johannes Leweux

Daimler AG,
Heavy Duty Engine Development,
Stuttgart 70546, Germany
e-mail: johannes.leweux@daimler.com

1Corresponding author.

Contributed by the Vehicular and Small Turbomachines Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 24, 2017; final manuscript received August 28, 2017; published online April 20, 2018. Editor: David Wisler.

J. Eng. Gas Turbines Power 140(7), 072701 (Apr 20, 2018) (10 pages) Paper No: GTP-17-1391; doi: 10.1115/1.4038323 History: Received July 24, 2017; Revised August 28, 2017

This paper presents the development approach, design, and evaluation of three turbocharger compressors with variable geometry for heavy duty engines. The main goal is the improvement of fuel economy without sacrifices regarding any other performance criteria. In a first step, a vaned diffuser parameter study shows that efficiency improvements in the relevant operating areas are possible at the cost of reduced map width. Concluding from the results, three variable geometries with varying complexity based on vaned diffusers are designed. Results from the hot gas test stand and engine test rig show that all systems are capable of increasing compressor efficiency and thus improving fuel economy in the main driving range of heavy duty engines. The most significant differences can be seen regarding the engine brake performance. Only one system meets all engine demands while improving fuel economy.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Mihelic, R. , 2016, “ Fuel and Freight Efficiency—Past, Present and Future Perspectives,” SAE Int. J. Commer. Veh., 9(2), pp. 120–216. [CrossRef]
Fisher, F. B. , 1988, “ Application of Map Width Enhancement Devices to Turbocharger Compressor Stages,” SAE Paper No. 880794.
Hunziker, R. , Dickmann, H.-P. , and Emmrich, R. , 2001, “ Numerical and Experimental Investigation of a Centrifugal Compressor With an Inducer Casing Bleed System,” Proc. Inst. Mech. Eng., Part A, 215(6), pp. 783–791. [CrossRef]
Krivitzky, E. , and Larosiliere, L. , 2012, “ Aero Design Challenges in Wide-Operability Turbocharger Centrifugal Compressors,” SAE Paper No. 2012-01-0710.
Sivagnanasundaram, S. , Spence, S. , Early, J. , and Nikpour, B. , 2012, “ Experimental and Numerical Analysis of a Classical Bleed Slot System for a Turbocharger Compressor,” IMechE Tenth International Conference on Turbochargers and Turbocharging, London, May 15–16, pp. 325–341.
Engels, B. , and Hemer, H.-J. , 1997, Turbolader Mit Verstellbarer Turbinengeometrie Fuer Nutzfahrzeugmotoren, Aufladetechnische Konferenz, Vol. 6, Dresden, Germany, pp. 115–130.
Schmitt, F. , and Pfeifer, A. , 2000, “ Die Auswirkung Von Abgasrueckfuehrung (AGR) Auf Den Aufgeladenen Deutz Dieselmotor BF6M 2013 Mit Variabler Turbinengeometrie,” Vol. 7, Aufladetechnische Konferenz, Dresden, Germany, pp. 271–288.
Bender, W. , and Engels, B. , 2002, “ VTG Turbocharger for Heavy Duty Commercial Diesel Applications With High Braking Performance,” Vol. 8, Aufladetechnische Konferenz, Dresden, Germany, pp. 97–108.
Hoerner, R. V. , Laemmermann, R. , Reisch, S. , and Weiß, J. , 2007, “ Abgasturboladerkonzepte Fuer Heutige Und Zukuenftige Nutzfahrzeugmotoren,” Vol. 12, Aufladetechnische Konferenz, Dresden, Germany, pp. 221–243.
Boemer, A. , Goettsche-Goetze, H.-C. , Kipke, P. , Kleuser, R. , and Nork, B. , 2011, “ Zweistufige Aufladungskonzepte Fuer Einen 7,8-Liter Tier4-Final Hochleistungs-Dieselmotor,” Vol. 16, Aufladetechnische Konferenz, Dresden, Germany, pp. 151–172.
Lefebvre, A. , and Guilain, S. , 2003, “ Transient Response of a Turbocharged SI Engine With an Electrical Boost Pressure Supply,” SAE Paper No. 2003-01-1844.
Pallotti, P. , Torella, E. , New, J. , Criddle, M. , and Brown, J. , 2003, “ Application of an Electric Boosting System to a Small, Four-Cylinder S.I. Engine,” SAE Paper No. 2003-32-0039.
Tavernier, S. , and Equoy, S. , 2013, “ Design and Characterization of an E-booster Driven by an High Speed Brushless DC Motor,” SAE Paper No. 2013-01-1762.
Fraser, N. , Fleischer, T. , Thornton, J. , and Rueckauf, J. , 2007, “ Development of a Fully Variable Compressor Map Enhancer for Automotive Application,” SAE Paper No. 2007-01-1558.
Gabriel, H. , Schmitt, F. , Weber, M. , Lingenauber, M. , and Schmalzl, H.-P. , 2002, “ Neue Erkenntnisse Bei Der Variablen Turbinen- Und Verdichtergeometrie Fuer Die Anwendung in Turboladern Fuer Pkw-Motoren,” Vol. 23, Internationales Wiener Motorensymposium, Vienna, Austria, pp. 161–184.
Herbst, F. , Stoeber-Schmidt, C.-P. , Eilts, P. , Sextro, T. , Kammeyer, J. , Natkaniec, C. , Seume, J. , Porzig, D. , and Schwarze, H. , 2011, “ The Potential of Variable Compressor Geometry for Highly Boosted Gasoline Engines,” SAE Paper No. 2011-01-0376.
Galindo, J. , Serrano, J. R. , Margot, X. , Tiseira, A. , Schorn, N. , and Kindl, H. , 2007, “ Potential of Flow Pre-Whirl at the Compressor Inlet of Automotive Engine Turbochargers to Enlarge Surge Margin and Overcome Packaging Limitations,” Int. J. Heat Fluid Flow, 28(3), pp. 374–387. [CrossRef]
Whitfield, A. , and Abdullah, A. H. , 1998, “ The Performance of a Centrifugal Compressor With High Inlet Prewhirl,” ASME J. Turbomach., 120(3), pp. 487–493. [CrossRef]
Casey, M. , and Rusch, D. , 2014, “ The Matching of a Vaned Diffuser With a Radial Compressor Impeller and Its Effect on the Stage Performance,” ASME J. Turbomach., 136(12), p. 121004. [CrossRef]
Engeda, A. , 2003, “ Experimental and Numerical Investigation of the Performance of a 240 kW Centrifugal Compressor With Different Diffusers,” Exp. Therm. Fluid Sci., 28(1), pp. 55–72. [CrossRef]
Eynon, P. A. , and Whitfield, A. , 1998, “ Performance of a Turbocharger Compressor With a Range of Low Solidity Vaned Diffusers,” SAE Paper No. 980772.
Oatway, T. P. , and Harp, J. L., Jr. , 1973, “ Investigations of a Variable Geometry Compressor for a Diesel Engine Turbocharger,” Defense Technical Information Center, Fort Belvoir, VA, Technical Report No. SR-21.
Malobabic, M. , and Rautenberg, M. , 1990, “ Betriebs- Und Regelverhalten Von Pkw-Turboladern Mit “Variabler Geometrie,” Aufladung Von Verbrennungsmotoren, M. Rautenberg , ed., Vieweg+Teubner Verlag, Wiesbaden, Germany, pp. 207–232. [CrossRef]
Berenyi, S. G. , and Raffa, C. J. , 1979, “ Variable Area Turbocharger for High Output Diesel Engines,” SAE Paper No. 790064.
Tange, H. , Ikeya, N. , Takanashi, M. , and Hokari, T. , 2003, “ Variable Geometry Diffuser of Turbocharger Compressor for Passenger Vehicles,” SAE Paper No. 2003-01-0051.
Eckert, B. , and Schnell, E. , 1953, Axialkompressoren Und Radialkompressoren, Springer, Berlin. [CrossRef]
Japikse, D. , 1996, Centrifugal Compressor Design and Performance, Concepts ETI, Wilder, VT.
Aungier, R. H. , 2000, Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis, ASME Press, New York.
Traupel, W. , 2013, Thermische Turbomaschinen: Zweiter Band: Regelverhalten, Festigkeit Und Dynamische Probleme, Springer-Verlag, Berlin.


Grahic Jump Location
Fig. 1

Baseline compressor map with performance curves

Grahic Jump Location
Fig. 2

Fuel consumption of S-HH-S

Grahic Jump Location
Fig. 3

Parameterized vaned diffuser model

Grahic Jump Location
Fig. 4

Compressor map of VD01 with efficiency benefit as contour lines

Grahic Jump Location
Fig. 5

Dimensionless map width of vaned diffusers

Grahic Jump Location
Fig. 6

Total pressure loss and pressure coefficient for vaned and vaneless compressors

Grahic Jump Location
Fig. 7

Loss factors of vaned diffusers

Grahic Jump Location
Fig. 8

Schematic diagrams of variable compressors

Grahic Jump Location
Fig. 12

VRVC compressor map with efficiency benefit as contour lines

Grahic Jump Location
Fig. 13

VSVC compressor map with efficiency benefit as contour lines

Grahic Jump Location
Fig. 14

VPVC compressor map with efficiency benefit as contour lines

Grahic Jump Location
Fig. 15

Variable compressor efficiency at engine full load

Grahic Jump Location
Fig. 16

Variable compressor actuator signal at engine full load

Grahic Jump Location
Fig. 17

Engine brake power

Grahic Jump Location
Fig. 18

Reduction in fuel consumption in main driving range with variable compressors

Grahic Jump Location
Fig. 19

Schematic diagram of hot gas test rig

Grahic Jump Location
Fig. 20

Schematic diagram of test bench engine




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In