0
Research Papers: Gas Turbines: Cycle Innovations

Comparison of Piston Concept Design Solutions for Composite Cycle Engines—Part I: Similarity Considerations

[+] Author and Article Information
Dimitrios Chatzianagnostou

Institute of Aircraft Propulsion Systems,
University of Stuttgart,
Stuttgart 70569, Germany
e-mail: dimitrios.chatzianagnostou@ila.uni-stuttgart.de

Stephan Staudacher

Institute of Aircraft Propulsion Systems,
University of Stuttgart,
Stuttgart 70569, Germany
e-mail: stephan.staudacher@ila.uni-stuttgart.de

1Corresponding author.

Contributed by the IC Engine Division of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 14, 2017; final manuscript received February 16, 2018; published online June 8, 2018. Assoc. Editor: Nadir Yilmaz.

J. Eng. Gas Turbines Power 140(9), 091702 (Jun 08, 2018) (9 pages) Paper No: GTP-17-1363; doi: 10.1115/1.4039704 History: Received July 14, 2017; Revised February 16, 2018

Composite cycle engines comprising piston engines (PEs) as well as piston compressors (PCs) to achieve hecto pressure ratios represent a target area of current research surpassing gas turbine efficiency. An unclear broad range of design parameters is existing to describe the design space of piston machines for this type of engine architecture. Previously published work focuses on thermodynamic studies only partially considering limitations of the design space. To untie the problem of PE design, a dimensional analysis is carried out reducing the number of parameters and deriving two basic similarity relations. The first one is a function of the mean effective pressure as well as the operating mode and is a direct result from the thermodynamic cycle. The second one is constituted of the stroke-to-bore ratio and the ratio of effective power to piston surface. Similarity relations regarding the PC design are based on Grabow (1993, “Das erweiterte “Cordier”—Diagramm Für Fluidenergiemaschinen und Verbrennungsmotoren,” Forsch. Ingenieurwes., 59, pp. 42–50). A further correlation for PCs is based on the specific compression work and the piston speed. In Part I, data of existing PEs have been subjected to the above similarity parameters unveiling the state-of-the-art design space. This allows a first discussion of current technological constraints. Applying this result to the composite cycle engine gives the design space and a first classification as a low-speed engine. Investigating various design points in terms of number and displacement volume of cylinders confirms the engine speed classification. Part II will expand this investigation using preliminary design studies.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

IATA, 2013, “ Reducing Emissions From Aviation Through Carbon-Neutral Growth From 2020,” 38th International Civil Aviation Organization Assembly, Montréal, QC, Canada, Sept. 24–Oct. 4.
ACARE, 2012, “ Flightpath 2050: Europe's Vision for Aviation; Maintaining Global Leadership and Serving Society's Needs,” Report of the High-Level Group on Aviation Research, Policy/European Commission, Publication Office of the European Union, Luxembourg.
Kurzke, J. , 2009, “ Fundamental Differences Between Conventional and Geared Turbofans,” ASME Paper No. GT2009-59745.
Bellocq, P. , Garmendia, I. , and Sethi, V. , 2015, “ Preliminary Design Assessments of Pusher Geared Counter-Rotating Open Rotors—Part I: Low Pressure System Design Choices, Engine Preliminary Design Philosophy and Modelling Methodology,” ASME Paper No. GT2015-43812.
Bellocq, P. , Garmendia, I. , and Sethi, V. , 2015, “ Preliminary Design Assessments of Pusher Geared Counter-Rotating Open Rotors—Part II: Impact of Low Pressure System Design on Mission Fuel Burn, Certification Noise and Emissions,” ASME Paper No. GT2015-43816.
Van Zante, D. E. , 2015, “ Progress in Open Rotor Research: A U.S. Perspective,” ASME Paper No. GT2015-42203.
Bellocq, P. , Garmendia, I. , Sethi, V. , Patin, A. , Capodanno, S. , and Rodriguez Lucas, F. , 2016, “ Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part I: Zero-Dimensional Performance Model for Counter-Rotating Propellers,” ASME J. Eng. Gas Turbines Power, 138(7), p. 072602. [CrossRef]
Bellocq, P. , Garmendia, I. , Sethi, V. , Patin, A. , Capodanno, S. , and Rodriguez Lucas, F. , 2016, “ Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part II: Impact on Fuel Consumption, Engine Weight, Certification Noise, and Nox Emissions,” ASME J. Eng. Gas Turbines Power, 138(7), p. 072603. [CrossRef]
Steiner, H.-J. , Seitz, A. , Wieczorek, K. , Plötner, K. , Isikveren, A. , and Hornung, M. , 2012, “ Multi-Disciplinary Design and Feasibility Study of Distributed Propulsion Systems,” 28th International Congress of the Aeronautical Sciences (ICAS), Brisbane, Australia, Sept. 23–28.
Laskaridis, P. , Valencia, E. , Kirner, R. , and Wei, T. J. , 2015, “ Assessment of Distributed Propulsion Systems Used With Different Aircraft Configurations,” AIAA Paper No. 2015-4029.
Wick, A. T. , Hooker, J. R. , and Zeune, C. H. , 2015, “ Integrated Aerodynamic Benefits of Distributed Propulsion,” AIAA Paper No. 2015-1500.
Schmidt, F. , Staudacher, S. , and Weigand, B. , 2013, “ Generalized Analysis of the Potential of Thermodynamic Cycles for Future Aircraft Propulsion Systems,” Deutscher Luft- und Raumfahrtkongress, Stuttgart, Germany, Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Paper No. DLRK-2013-301350.
Grönstedt, T. , Irannezhad, M. , Lei, X. , Thulin, O. , and Lundbladh, A. , 2014, “ First and Second Law Analysis of Future Aircraft Engines,” ASME J. Eng. Gas Turbines Power, 136(3), p. 031202. [CrossRef]
Schmidt, F. , and Staudacher, S. , 2015, “ Generalized Thermodynamic Assessment of Concepts for Increasing the Efficiency of Civil Aircraft Propulsion Systems,” ASME Paper No. GT2015-42447.
Camilleri, W. , Anselmi, E. , Sethi, V. , Laskaridis, P. , Rolt, A. , and Cobas, P. , 2015, “ Performance Characteristics and Optimisation of a Geared Intercooled Reversed Flow Core Engine,” Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng., 229(2), pp. 269–279. [CrossRef]
Kyprianidis, K. G. , Rolt, A. M. , and Grönstedt, T. , 2014, “ Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine,” ASME J. Eng. Gas Turbines Power, 136(1), p. 011203. [CrossRef]
Kyprianidis, K. G. , and Rolt, A. M. , 2015, “ On the Optimization of a Geared Fan Intercooled Core Engine Design,” ASME J. Eng. Gas Turbines Power, 137(4), p. 041201. [CrossRef]
Zhao, X. , Thulin, O. , and Grönstedt, T. , 2016, “ First and Second Law Analysis of Intercooled Turbofan Engine,” ASME J. Eng. Gas Turbines Power, 138(2), p. 021202. [CrossRef]
Nalim, M. R. , 2002, “ Thermodynamic Limits of Work and Pressure Gain in Combustion and Evaporation Processes,” J. Propul. Power, 18(6), pp. 1176–1182. [CrossRef]
Akbari, P. , Nalim, R. , and Mueller, N. , 2006, “ A Review of Wave Rotor Technology and Its Applications,” ASME J. Eng. Gas Turbines Power, 128(4), p. 717. [CrossRef]
Snyder, P. H. , and Nalim, M. R. , 2012, “ Pressure Gain Combustion Application to Marine and Industrial Gas Turbines,” ASME Paper No. GT2012-69886.
Hutchins, T. E. , and Metghalchi, M. , 2003, “ Energy and Exergy Analyses of the Pulse Detonation Engine,” ASME J. Eng. Gas Turbines Power, 125(4), pp. 1075–1080. [CrossRef]
Goldmeer, J. , Tangirala, V. , and Dean, A. , 2008, “ System-Level Performance Estimation of a Pulse Detonation Based Hybrid Engine,” ASME J. Eng. Gas Turbines Power, 130(1), p. 011201. [CrossRef]
McDonald, C. F. , Massardo, A. F. , Rodgers, C. , and Stone, A. , 2008, “ Recuperated Gas Turbine Aeroengines—Part I: Early Development Activities,” Aircr. Eng. Aerosp. Technol., 80(3), pp. 139–157. [CrossRef]
McDonald, C. F. , Massardo, A. F. , Rodgers, C. , and Stone, A. , 2008, “ Recuperated Gas Turbine Aeroengines—Part II: Engine Design Studies Following Early Development Testing,” Aircr. Eng. Aerosp. Technol., 80(3), pp. 280–294. [CrossRef]
McDonald, C. F. , Massardo, A. F. , Rodgers, C. , and Stone, A. , 2008, “ Recuperated Gas Turbine Aeroengines—Part III: Engine Concepts for Reduced Emissions, Lower Fuel Consumption, and Noise Abatement,” Aircr. Eng. Aerosp. Technol., 80(4), pp. 408–426. [CrossRef]
Vogeler, K. , 1998, “ The Potential of Sequential Combustion for High Bypass Jet Engines,” ASME Paper No. 98-GT-311.
Klein, F. , and Staudacher, S. , 2017, “ Plausibility Study of Hecto Pressure Ratio Concepts in Large Civil Aero Engines,” ASME Paper No. GT2017-64214.
FlightGlobal, 1954, “ Napier Nomad—An Engine of Outstanding Efficiency,” Flight Global, M. A. Smith , ed., FlightGlobal, Sutton, UK, pp. 543–552.
Gunston, B. , 2006, World Encyclopedia of Aero Engines: From the Pioneers to the Present Day, 5th ed., Sutton Publishing, Stroud, UK.
Civinskas, K. C. , and Kraft, G. A. , 1976, “ Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TM-X-71906.
Castor, J. , 1983, “ Compound Cycle Turbofan Engine,” AIAA Paper No. 1983-1338.
Willis, E. , and Wintucky, W. , 1984, “ An Overview of NASA Intermittent Combustion Engine Research,” AIAA Paper No. 1984-1393.
Andre, W. , 1985, “ Aircraft Preliminary Design Comparison of Advanced Compound Engines With Advanced Turbine Engines for Helicopter Applications,” AIAA Paper No. 1985-1276.
Castor, J. , Martin, J. , and Bradley, C. , 1987, “ Compound Cycle Engine for Helicopter Application,” National Aeronautics and Space Administration, Cleveland, OH, Technical Report No. NASA CR-180824.
Adleff, K. , Kamossa, K. , and Kley, M. , 2014, “ Turbo-Compound-Systeme an Nutzfahrzeugmotoren—Anforderungen, Nutzen und Innovative Lösungsansätze,” Internationaler Motorenkongress 2014, J. Liebl , ed., pp. 403–415. [CrossRef]
Pescara Raul, P. , 1942, “Means for Driving the Propelling System of Aircraft,” U.S. Patent No. U.S. 2292288 A.
Pescara Raul, P. , 1940, “Free Piston Machine,” U.S. Patent No. US2189497 A.
Gersdorff, K. V. , Grasmann, K. , and Benecke, T. , 1981, Flugmotoren Und Strahltriebwerke: Entwicklungsgeschichte Der Deutschen Luftfahrtantriebe Von Den Anfängen Bis Zu Den Europäischen Gemeinschaftsentwicklungen (Die Deutsche Luftfahrt), Vol. 2, Munich, Germany.
Whurr, J. , 1997, “Aircraft Compound Cycle Propulsion Engine,” Rolls-Royce PLC, Westhampnett, UK, U.S. Patent No. US5692372 A.
Robinson, J. C. J. , 2007, “Gasturbinentriebwerk,” MTU Aero Engines GmbH, Munich, Germany, Patent No. DE102006015928A1.
Klingels, H. , 2013, “Wärmekraftmaschine Mit Freikolbenverdichter,” MTU Aero Engines GmbH, Munich, Germany, Patent No. DE102012206123A1.
Gauvreau, J. G. , and Gagnon-Martin, D. , 2014, “Wankel Engine Rotor,” Patent No. CA2834082 A1.
Kaiser, S. , Seitz, A. , Donnerhack, S. , and Lundbladh, A. , 2016, “ Composite Cycle Engine Concept With Hectopressure Ratio,” J. Propul. Power, 32(6), pp. 1413–1421. [CrossRef]
Panting, J. R. , and Pullen, K. R. , 2000, “ Thermodynamic Studies of a Novel Aeroengine Concept,” Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng., 214(2), pp. 71–83. [CrossRef]
Nickl, M. , Kaiser, S. , Seitz, A. , and Hornung, M. , 2016, “ Performance Modeling of a Composite Cycle Engine With Rotary Engine,” Deutscher Luft- und Raumfahrtkongress, Braunschweig, Germany, Sept. 13–15, Paper No. DLRK-2016-420144.
Berg, H. P. , Himmelberg, A. , Malenky, U. , Meincke, M. , and Soontornpasatch, T. , 2016, “ Hybrides Turbo Compound Fan Triebwerk,” Deutscher Luft- und Raumfahrtkongress, Braunschweig, Germany, Sept. 13–15, Paper No. DLRK-2016-420246.
Maass, H. , 1979, Gestaltung Und Hauptabmessungen Der Verbrennungskraftmaschine (Die Verbrennungskraftmaschine. Neue Folge, Vol. 1), Springer, Vienna, Austria. [CrossRef]
Schrön, H. , 1947, Die Dynamik Der Verbrennungskraftmaschine, 2nd ed. (Die Verbrennungskraftmaschine, Grundlagen zur Gestaltung von Verbrennungskraftmaschinen, Vol. 8), Springer, Berlin, Heidelberg. [CrossRef]
Simon, V. , Weigand, B. , and Gomaa, H. , 2017, Dimensional Analysis for Engineers, Springer International Publishing, Cham, Switzerland. [CrossRef]
Pischinger, R. , Klell, M. , and Sams, T. , 2009, Thermodynamik Der Verbrennungskraftmaschine, 3rd ed. (Der Fahrzeugantrieb), Springer, Vienna, Austria.
Köhler, E. , and Flierl, R. , 2012, Verbrennungsmotoren: Motormechanik, Berechnung Und Auslegung Des Hubkolbenmotors, 6th ed. (ATZ/MTZ-Fachbuch), Vieweg+Teubner Verlag, Wiesbaden, Germany.
Van Basshuysen, R. , and Schäfer, F. , 2015, Handbuch Verbrennungsmotor, Springer Vieweg, Wiesbaden, Germany. [CrossRef]
BMW Presseinformation, 2017, “Technische Daten,” BMW Group, Munich, Germany, accessed May 17, 2017, https://www.press.bmwgroup.com/global
Waltner, A. , Lückert, P. , Doll, G. , and Kemmler, R. , 2010, “ Der Neue 3,5-l-V6-Ottomotor Mit Direkteinspritzung Von Mercedes-Benz,” Motortech. Z., 71(9), pp. 576–585. [CrossRef]
Bauder, A. , Krause, W. , Mann, M. , Pischke, R. , and Pölzl, H.-W. , 1999, “ Die Neuen V8-Ottomotoren Von Audi Mit Fünfventiltechnik,” Motortech. Z., 60(1), pp. 8–21. [CrossRef]
Frigge, P. , Affolter, S. , Bachmann, D. , and Jong, R. , 2011, “ Neue Zweitakt-Schiffsdieselmotoren Von Waertsilae,” Motortech. Z., 72(11), pp. 846–853. [CrossRef]
Volvo Trucks, 2017, “Technische Daten Antriebsstrang,” Volvo Group, Ismaning, Germany, accessed May 8, 2017, http://www.volvotrucks.de/de-de/trucks/volvo-fh-series/specifications.html
Schubert, H. , 1999, Deutsche Triebwerke: Flugmotoren Und Strahltriebwerke Von 1934 Bis 1999, 3rd ed., Aviatic-Verlag, Oberhaching, Germany.
Mollenhauer, K. , and Tschöke, H. , eds., 2007, Handbuch Dieselmotoren, 3rd ed., Springer-Verlag, Berlin.
Steigenberger, O. , 1943, “ Vergleichende Wertung Von Flugmotoren,” Motortech. Z., 5(11/12), pp. 361–368.
Miles, P. C. , and Andersson, Ö. , 2016, “ A Review of Design Considerations for Light-Duty Diesel Combustion Systems,” Int. J. Engine Res., 17(1), pp. 6–15. [CrossRef]
Filipi, Z. S. , and Assanis, D. N. , 2000, “ The Effect of the Stroke-to-Bore Ratio on Combustion, Heat Transfer and Efficiency of a Homogeneous Charge Spark Ignition Engine of Given Displacement,” Int. J. Engine Res., 1(2), pp. 191–208. [CrossRef]
Lutz, O. , 1933, “ Ähnlichkeitsbetrachtungen Bei Brennkraftmaschinen,” Ing.-Archiv, IV(4), pp. 373–383. [CrossRef]
Sanden, K. v. , 1932, “ Kennzahlen Für Schnelläufigkeit Und Leistungsgewicht Von Brennkraftmaschinen,” Ing.-Archiv, III(3), pp. 311–318. [CrossRef]
Kutzbach, K. , 1921, “ Fortschritte Und Probleme Der Mechanischen Energieumformung,” Z. VDI, 65(51), p. S.1301/2.
Grabow, G. H. , 1993, “ Das Erweiterte “Cordier”—Diagramm Für Fluidenergiemaschinen Und Verbrennungsmotoren,” Forsch. Ingenieurwes., 59(3), pp. 42–50. [CrossRef]
Bouché, C. , and Wintterlin, K. , 1968, Kolbenverdichter: Einführung in Arbeitsweise, Bau Und Betrieb Von Luft- Und Gasverdichtern Mit Kolbenbewegung, 4th ed., Springer, Berlin, Heidelberg.
Küttner, K.-H. , 1992, Kolbenverdichter: Mit 32 Tabellen, Springer, Berlin. [CrossRef]
Grote, K.-H. , and Feldhusen, J. , 2007, Dubbel: Taschenbuch Für Den Maschinenbau, 22nd ed., Springer, Berlin, Heidelberg.
Cordier, O. , 1953, “ Ähnlichkeitsbedingungen Für Strömungsmaschinen,” BWK Z., 5(10), pp. 337–340.

Figures

Grahic Jump Location
Fig. 1

Analyzed composite cycle architecture

Grahic Jump Location
Fig. 2

Abstracted principle of operation of a two-stroke single-cylinder engine

Grahic Jump Location
Fig. 3

Thermal specific speed ratio versus mechanical specific speed ratio of the engines given in Table 2

Grahic Jump Location
Fig. 4

Selected engines of similar mean effective pressure and their corresponding mean effective pressure isolines

Grahic Jump Location
Fig. 5

Mean effective pressure isoline of the composite cycle engine

Grahic Jump Location
Fig. 6

Effect of the ratio of effective power to piston surface at constant stroke-to-bore ratio

Grahic Jump Location
Fig. 7

Effect of the stroke-to-bore ratio at constant ratio of effective power to piston surface

Grahic Jump Location
Fig. 8

The resulting design space of the composite cycle engine based on technological constraints

Grahic Jump Location
Fig. 9

Number of cylinders and total displacement volume of the PE for the investigated design points

Grahic Jump Location
Fig. 10

Cylinder displacement volume of the PE versus rotational speed for the investigated design points

Grahic Jump Location
Fig. 11

Stroke versus rotational speed for selected designs

Grahic Jump Location
Fig. 12

The resulting design space in the extended Cordier diagram

Grahic Jump Location
Fig. 13

Number of cylinders and total displacement volume of the PC for the investigated designs

Grahic Jump Location
Fig. 14

Cylinder displacement volume of the PC versus rotational speed for the investigated designs

Grahic Jump Location
Fig. 15

Number of cylinders and total displacement volume of the PC for the investigated designs

Grahic Jump Location
Fig. 16

Cylinder displacement volume of the PC versus rotational speed for the investigated designs

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In