0
Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

An Investigation of Combustion Properties of Butanol and Its Potential for Power Generation

[+] Author and Article Information
Torsten Methling, Sandra Richter, Clemens Naumann, Uwe Riedel

German Aerospace Center (DLR),
Institute of Combustion Technology,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany

Trupti Kathrotia

German Aerospace Center (DLR),
Institute of Combustion Technology, Pfaffenwaldring 38-40,
Stuttgart 70569, Germany

Marina Braun-Unkhoff

German Aerospace Center (DLR),
Institute of Combustion Technology,
Pfaffenwaldring 38-40,
Stuttgart 70569, Germany
e-mail: Marina.Braun-Unkhoff@dlr.de

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received January 9, 2018; final manuscript received February 19, 2018; published online June 15, 2018. Editor: David Wisler.

J. Eng. Gas Turbines Power 140(9), 091505 (Jun 15, 2018) (10 pages) Paper No: GTP-18-1014; doi: 10.1115/1.4039731 History: Received January 09, 2018; Revised February 19, 2018

Over the last years, global concerns about energy security and climate change have resulted in many efforts focusing on the potential utilization of nonpetroleum-based, i.e., bioderived, fuels. In this context, n-butanol has recently received high attention because it can be produced sustainably. A comprehensive knowledge about its combustion properties is inevitable to ensure an efficient and smart use of n-butanol if selected as a future energy carrier. In the present work, two major combustion characteristics, here laminar flame speeds applying the cone-angle method and ignition delay times applying the shock tube technique, have been studied, experimentally, and by modeling exploiting detailed chemical kinetic reaction models, at ambient and elevated pressures. The in-house reaction model was constructed applying the reaction model generation (RMG)-method. A linear transformation method recently developed, linTM, was exploited to generate a reduced reaction model needed for an efficient, comprehensive parametric study of the combustion behavior of n-butanol-hydrocarbon mixtures. All experimental data were found to agree with the model predictions of the in-house reaction model, for all temperatures, pressures, and fuel-air ratios. On the other hand, calculations using reaction models from the open literature mostly overpredict the measured ignition delay times by about a factor of two. The results are compared to those of ethanol, with ignition delay times very similar and laminar flame speeds of n-butanol slightly lower, at atmospheric pressure.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sarathy, S. M. , Oßwald, P. , Hansen, N. , and Kohse-Höinghaus, K. , 2014, “Alcohol Combustion Chemistry,” Prog. Energy Combust. Sci., 44, pp. 40–102. [CrossRef]
Köhler, M. , Kathrotia, T. , Oßwald, P. , Fischer-Tammer, M. L. , Moshammer, K. , and Riedel, U. , 2015, “1-, 2- and 3-Pentanol Combustion in Laminar Hydrogen Flames—A Comparative Experimental and Modeling Study,” Combust. Flame, 162(9), pp. 3197–3209. [CrossRef]
Tao, L. , Aden, A. , He, X. , Tan, E. C. D. , Zhang, M. , Zigler, B. T. , and McCormick, R. L. , 2013, “Techno-Economic Analysis and Life-Cycle Assessment of Cellulosic Iso-Butanol and Comparison With Cellulosic Ethanol and n-Butanol,” Biofuels, Bioprod. Biorefin., 8(1), pp. 30–48. [CrossRef]
Braun-Unkhoff, M. , Hansen, N. , Methling, T. , Moshammer, K. , and Yang, B. , 2017, “The Influence of Iso-Butanol Addition to the Chemistry of Premixed 1,3-Butadiene Flames,” Proc. Combust. Inst., 36(1), pp. 1311–1319. [CrossRef]
Hansen, N. , Braun-Unkhoff, M. , Kathrotia, T. , Lucassen, A. , and Yang, B. , 2015, “Understanding the Reaction Pathways in Premixed Flames Fueled by Blends of 1,3-Butadiene and n-Butanol,” Proc. Combust. Inst., 35(1), pp. 771–778. [CrossRef]
Ratcliff, A. , Luecke, J. , Williams, A. , Christensen, E. , Yanowitz, J. , Reek, A. , and McCormick, R. L. , 2013, “Impact of Higher Alcohols Blended in Gasoline on Light-Duty Vehicle Exhaust Emissions,” Environ. Sci. Technol., 47(23), pp. 13865–13872. [CrossRef] [PubMed]
Böhm, H. , and Braun-Unkhoff, M. , 2008, “Numerical Study on the Effect of Oxygenated Blending Compounds Soot Formation in Shock Tubes,” Combust. Flame, 153(1–2), pp. 84–96. [CrossRef]
ASTM International, 2013, “Standard Specification for Butanol for Blending With Gasoline for Use as Automotive Spark-Ignition Engine Fuel,” ASTM International, Washington, DC, Standard No. ASTM D7862-13. https://www.astm.org/DATABASE.CART/HISTORICAL/D7862-13.htm
Braun-Unkhoff, M. , Dembowski, J. , Herzler, J. , Karle, J. , Naumann, C. , and Riedel, U. , 2014, “Alternative Fuels Based on Biomass: An Experimental and Modeling Study of Ethanol Co-Firing to Natural Gas,” ASME J. Eng. Gas Turbines Power, 137(9), p. 091503. [CrossRef]
Herzler, J. , Herbst, J. , Kick, T. , Naumann, C. , Braun-Unkhoff, M. , and Riedel, U. , 2012, “Alternative Fuels Based on Biomass: An Investigation on Combustion Properties of Product Gases,” ASME J. Eng. Gas Turbines Power, 135(3), p. 031401. [CrossRef]
Methling, T. , Braun-Unkhoff, M. , and Riedel, U. , 2013, “A Chemical-Kinetic Investigation of Combustion Properties of Alternative Fuels—A Step Towards a More Efficient Power Generation,” ASME Paper No. GT2013-94994.
Hohloch, M. , Widenhorn, A. , Lebküchner, D. , Panne, T. , and Aigner, M. , 2008, “Micro Gas Turbine Test Rig for Hybrid Power Plant Application,” ASME Paper No. GT2008-50443.
Veloo, P. S. , Wang, Y. L. , Egolfopoulos, F. N. , and Westbrook, C. K. , 2010, “A Comparative Experimental and Computational Study of Methanol, Ethanol, and n-Butanol Flames,” Combust. Flame, 157(10), pp. 1989–2004. [CrossRef]
Sarathy, S. M. , Thomson, M. J. , Togbé, C. , Dagaut, P. , Halter, F. , and Mounaim-Rousselle, C. , 2009, “An Experimental and Kinetic Modeling Study of n-Butanol Combustion,” Combust. Flame, 156(4), pp. 852–864. [CrossRef]
Liu, W. , Kelley, A. P. , and Law, C. K. , 2011, “Non-Premixed Ignition, Laminar Flame Propagation, and Mechanism Reduction of n-Butanol, Iso-Butanol, and Methyl Butanoate,” Proc. Combust. Inst., 33(1), pp. 995–1002. [CrossRef]
Wu, F. , and Law, C. K. , 2013, “An Experimental and Mechanistic Study on the Laminar Flame Speed, Markstein Length and Flame Chemistry of the Butanol Isomers,” Combust. Flame, 160(12), pp. 2744–2756. [CrossRef]
Beeckmann, J. , Cai, L. , and Pitsch, H. , 2014, “Experimental Investigation of the Laminar Burning Velocities of Methanol, Ethanol, n-Propanol, and n-Butanol at High Pressure,” Fuel, 117(A), pp. 340–350. [CrossRef]
Knorsch, T. , Zackel, A. , Mamaikin, D. , Zigan, L. , and Wensing, M. , 2014, “Comparison of Different Gasoline Alternative Fuels in Terms of Laminar Burning Velocity at Increased Gas Temperatures and Exhaust Gas Recirculation Rates,” Energy Fuels, 28(2), pp. 1446–1452. [CrossRef]
Broustail, G. , Seers, P. , Halter, F. , Moréac, G. , and Mounaim-Rousselle, C. , 2011, “Experimental Determination of Laminar Burning Velocity for Butanol and Ethanol Iso-Octane Blends,” Fuel, 90(1), pp. 1–6. [CrossRef]
Li, Q. , Hu, E. , Cheng, Y. , and Huang, Z. , 2013, “Measurements of Laminar Flame Speeds and Flame Instability Analysis of 2-Methyl-1-Butanol–Air Mixtures,” Fuel, 112, pp. 263–271. [CrossRef]
Gu, X. , Huang, Z. L. , and Tang, C. , 2009, “Measurements of Laminar Burning Velocities and Markstein Lengths of n-Butanol−Air Premixed Mixtures at Elevated Temperatures and Pressures,” Energy Fuels, 23(10), pp. 4900–4907. [CrossRef]
Broustail, G. , Halter, F. , Seers, P. , Moréac, G. , and Mounaim-Rousselle, C. , 2013, “Experimental Determination of Laminar Burning Velocity for Butanol/Iso-Octane and Ethanol/Iso-Octane Blends for Different Initial Pressures,” Fuel, 106, pp. 310–317. [CrossRef]
Gu, X. , Huang, Z. , Wu, S. , and Li, Q. , 2010, “Laminar Burning Velocities and Flame Instabilities of Butanol Isomers-Air Mixtures,” Combust. Flame, 157(12), pp. 2318–2325. [CrossRef]
Zhu, Y. , Davidson, D. F. , and Hanson, R. K. , 2014, “1-Butanol Ignition Delay Times at Low Temperatures: An Application of the Constrained-Reaction-Volume Strategy,” Combust. Flame, 161(3), pp. 634–643. [CrossRef]
Heufer, K. A. , Fernandes, R. X. , Olivier, H. , Beeckmann, J. , Röhl, O. , and Peters, N. , 2011, “Shock Tube Investigations of Ignition Delays of n-Butanol at Elevated Pressures Between 770 and 1250 K,” Proc. Combust. Inst., 33(1), pp. 359–366. [CrossRef]
Vranckx, S. , Heufer, K. A. , Lee, C. , Olivier, H. , Schill, L. , Kopp, W. A. , Leonhard, K. , Taatjes, C. A. , and Fernandes, R. X. , 2011, “Role of Peroxy Chemistry in the High-Pressure Ignition of n-Butanol—Experiments and Detailed Kinetic Modelling,” Combust. Flame, 158(8), pp. 1444–1455. [CrossRef]
Stranic, I. , Chase, D. P. , Harmon, J. T. , Yang, S. , Davidson, D. F. , and Hanson, R. K. , 2012, “Shock Tube Measurements of Ignition Delay Times for the Butanol Isomers,” Combust. Flame, 159(2), pp. 516–527. [CrossRef]
Noorani, K. E. , Akih-Kumgeh, B. , and Bergthorson, J. M. , 2010, “Comparative High Temperature Shock Tube Ignition of C1–C4 Primary Alcohols,” Energy Fuels, 24(11), pp. 5834–5843. [CrossRef]
Zhang, J. , Pan, L. , Gong, J. , Huang, Z. , and Law, C. K. , 2013, “A Shock Tube and Kinetic Modeling Study of n-Butanal Oxidation,” Combust. Flame, 160(9), pp. 1541–1549. [CrossRef]
Black, G. , Curran, H. J. , Pichon, S. , Simmie, J. M. , and Zhukov, V. , 2010, “Bio-Butanol: Combustion Properties and Detailed Chemical Kinetic Model,” Combust. Flame, 157(2), pp. 363–373. [CrossRef]
Moss, J. T. , Berkowitz, A. M. , Oehlschlaeger, M. A. , Biet, J. , Warth, V. , Glaude, P.-A. , and Battin-Leclerc, F. , 2008, “An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol,” J. Phys. Chem. A, 112(43), pp. 10843–10855. [CrossRef] [PubMed]
POLIMI, HT-mech, Frassoldati, A. , Cuoci, A. , Faravelli, T. , and Ranzi, E. , 2014, “The Creck Modeling Group,” CRECK Modeling, Milan, Italy, accessed Nov. 18, 2016, http://creckmodeling.chem.polimi.it/index.php/menu-kinetics/menu-kinetics-detailed-mechanisms/menu-kinetics-prf-pah-alcohols-ethers-mechanism
Sarathy, S. M. , Vranckx, S. , Yasunaga, K. , Mehl, M. , Oßwald, P. , Metcalfe, W. K. , Westbrook, C. K. , Pitz, W. J. , Kohse-Höinghaus, K. , and Fernandes, R. X. , 2012, “A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers,” Combust. Flame, 159(6), pp. 2028–2055. [CrossRef]
Frassoldati, A. , Grana, R. , Faravelli, T. , Ranzi, E. , Oßwald, P. , and Kohse-Höinghaus, K. , 2012, “Detailed Kinetic Modeling of the Combustion of the Four Butanol Isomers in Premixed Low-Pressure Flames,” Combust. Flame, 159(7), pp. 2295–2311. [CrossRef]
Frassoldati, A. , Cuoci, A. , Faravelli, T. , and Ranzi, E. , 2010, “Kinetic Modeling of the Oxidation of Ethanol and Gasoline Surrogate Mixtures,” Combust. Sci. Technol., 182(4–6), pp. 653–667. [CrossRef]
Frassoldati, A. , Cuoci, A. , Faravelli, T. , Niemann, U. , Ranzi, E. , Seiser, R. , and Seshadri, K. , 2010, “An Experimental and Kinetic Modeling Study of n-Propanol and Iso-Propanol Combustion,” Combust. Flame, 157(1), pp. 2–16. [CrossRef]
Goldaniga, A. , Faravelli, T. , Ranzi, E. , Dagaut, P. , and Cathonnet, M. , 1998, “Oxidation of Oxygenated Octane Improvers: MTBE, ETBE, DIPE, and TAME,” Proc. Combust. Inst., 27(1), pp. 353–360. [CrossRef]
Goodwin, D. G. , Moffat, H. K. , and Speth, R. L. , 2016, “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.2.1,” Zenodo, Geneva, Switzerland, accessed Apr. 9, 2018, https://zenodo.org/record/45206#.Wstl52e6a44
Kee, R. J. , Dixon-Lewis, G. , Warnatz, J. , Coltrin, M. E. , and Miller, J. A. , 1986, “The Chemkin Transport Database,” Sandia National Laboratories, Livermore, CA, Report No. SAND86-8246.
Kee, R. J. , Rupley, F. M. , and Miller, J. A. , 1987, “CHEMKIN: The Chemkin Thermodynamic Database,” Sandia National Laboratories, Livermore, CA, Report No. SAND87-8215.
Kee, R. J. , Rupley, F. M. , and Miller, J. A. , 1989, “Chemkin II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics,” Sandia Laboratories, Livermore, CA, Report No. SAND89-8009B.
Herzler, J. , and Naumann, C. , 2008, “Shock Tube Study of the Ignition of Lean CO/H2 Fuel Blends at Intermediate Temperatures and High Pressure,” Combust. Sci. Technol., 180(10–11), pp. 2015–2028. [CrossRef]
Green, W. H. , Allen, J. W. , Beat, A. , Buesser, R. , Ashcraft, W. , Beran, G. J. , Class, C. A. , Gao, C. , Goldsmith, C. F. , Harper, M. R. , Jalan, A. , Keceli, M. , Magoon, G. R. , Matheu, D. M. , Merchant, S. S. , Mo, J. D. , Petway, S. , Raman, S. , Sharma, S. , Song, J. , Suleymanov, Y. , Geem, K. M. V. , Wen, J. , West, R. H. , Wong, A. , Wong, H. W. , Yelvington, P. E. , Yee, N. , and Yu, J. , 2013, “RMG-Reaction Mechanism Generator v4.0.1,” RMG, Cambridge, MA, accessed Apr. 9, 2018, http://rmg.sourceforge.net
Slavinskaya, N. , Riedel, U. , Saibov, E. , Herzler, J. , and Naumann, C. , 2014, “Kinetic Surrogate Model for GTL Kerosene,” AIAA Paper No. 2014-0126.
Methling, T. , Braun-Unkhoff, M. , and Riedel, U. , 2016, “A Novel Linear Transformation Model for the Analysis and Optimisation of Chemical Kinetics,” Combust. Theory Modell., 21(3), pp. 503–528. [CrossRef]
Herzler, J. , and Naumann, C. , 2009, “Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents From 0 to 100% at Different Pressures,” Proc. Combust. Inst., 32(1), pp. 213–220. [CrossRef]
Kick, T. , Kathrotia, T. , Braun-Unkhoff, M. , and Riedel, U. , 2011, “An Experimental and Modeling Study of Laminar Flame Speeds of Alternative Aviation Fuels,” ASME Paper No. GT2011-45606.
Kick, T. , Herbst, J. , Kathrotia, T. , Marquetand, J. , Braun-Unkhoff, M. , Naumann, C. , and Riedel, U. , 2012, “An Experimental and Modeling Study of Burning Velocities of Possible Future Synthetic Jet Fuels,” Energy, 43(1), pp. 111–123. [CrossRef]
Mzé Ahmed, A. , Dagaut, P. , Hadj-Ali, K. , Dayma, G. , Kick, T. , Herbst, J. , Kathrotia, T. , Braun-Unkhoff, M. , Herzler, J. , Naumann, C. , and Riedel, U. , 2012, “Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study,” Energy Fuels, 26(10), pp. 6070–6079. [CrossRef]
Dagaut, P. , Karsenty, F. , Dayma, G. , Diévart, P. , Hadj-Ali, K. , and Mzé-Ahmed, A. , 2013, “Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel,” Combust. Flame, 161(3), pp. 835–847. [CrossRef]
Andrews, G. E. , and Bradley, D. , 1972, “Determination of Burning Velocities: A Critical Review,” Combust. Flame, 18(1), pp. 133–153. [CrossRef]
Eberius, H. , and Kick, T. , 1992, “Stabilization of Premixed, Conical Methane Flames at High Pressure,” Ber. Bunsen-Ges. Phys. Chem., 96(10), pp. 1416–1419. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Comparison of laminar flame speeds (n-butanol-air) at about p = 1 bar and at various preheat temperatures T [1323]

Grahic Jump Location
Fig. 2

Global sensitivity analysis of the detailed reaction mechanism (ten most important reactions)

Grahic Jump Location
Fig. 3

Experimental setup of the burner system (MFC—mass flow controller; TB—boiling point)

Grahic Jump Location
Fig. 4

Determination of the laminar burning velocity Su (vu—flow speed of the unburned gas mixture, α—cone angle)

Grahic Jump Location
Fig. 5

Typical premixed n-butanol–air flames at T = 473 K and p = 1 bar (left) and p = 6 bar (right), for different φ-values: 0.7 (top) and 1.0 (bottom)

Grahic Jump Location
Fig. 6

Pressure and emission signals: n-butanol/O2/Ar sample; φ = 1.0, p = 16.3 bar; T = 990 K; dilution (Ar) 1:5; τign = 6155 μs

Grahic Jump Location
Fig. 7

Comparison between measured burning velocities (full symbols) and calculated laminar flame speeds (curves, open symbols) of n-butanol–air mixtures: T = 473 K for p = 1 bar, 3 bar, and p = 6 bar

Grahic Jump Location
Fig. 8

Comparison between measured (circles—full symbols) and calculated ignition delay times (curves, open symbols) of n-butanol–O2–Ar mixtures

Grahic Jump Location
Fig. 9

Comparison between measured (circles—full symbols) and calculated ignition delay times (curves, open symbols) of ethanol–O2–Ar mixtures

Grahic Jump Location
Fig. 10

Sensitivity of ignition delay time

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In