Research Papers: Gas Turbines: Coal, Biomass, and Alternative Fuels

Use of the Glycerin By-Product From Biodiesel Production for Power Generation

[+] Author and Article Information
Derek Pickett

Department of Mechanical Engineering,
University of Kansas,
3138 Learned Hall,
1530 W. 15th Street,
Lawrence, KS 66045
e-mail: derekpickett@hotmail.com

Christopher Depcik

Department of Mechanical Engineering,
University of Kansas,
3144C Learned Hall,
1530 W. 15th Street,
Lawrence, KS 66045
e-mail: depcik@ku.edu

Susan Stagg-Williams

Department of Chemical and Petroleum
University of Kansas,
4142 Learned Hall,
1530 W. 15th Street,
Lawrence, KS 66045
e-mail: smwilliams@ku.edu

1Corresponding author.

Contributed by the Coal, Biomass and Alternate Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received April 28, 2017; final manuscript received March 19, 2018; published online June 19, 2018. Assoc. Editor: Ajay Agrawal.

J. Eng. Gas Turbines Power 140(10), 101401 (Jun 19, 2018) (8 pages) Paper No: GTP-17-1154; doi: 10.1115/1.4039819 History: Received April 28, 2017; Revised March 19, 2018

Climate change is driving the world to investigate alternative sources of fuel. In order to address any potential economic shortfalls to biodiesel, one can look to its by-product, glycerin, as a potential revenue source. At the University of Kansas, a novel system converts glycerin over a nickel–alumina catalyst into a hydrogen-rich gas (syngas) that is sent to an engine-generator system in one continuous flow process. This effort describes the hardware employed in this system, and demonstrates the production of power from the reforming of glycerin. Comparison of the peak combustion pressure and combustion timing produced between the syngas generated from glycerin and propane combustion shows virtually no performance differences between the two fuels. However, emissions vary significantly due to a variance in air-to-fuel ratios between the two fuels that will require a re-optimization when running glycerin. This system has the potential to reduce power requirements at biodiesel production facilities by utilizing glycerin on-site in a low-cost manner.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Carraretto, C. , Macor, A. , Mirandola, A. , Stoppato, A. , and Tonon, S. , 2004, “ Biodiesel as Alternative Fuel: Experimental Analysis and Energetic Evaluations,” Energy, 29(12–15), pp. 2195–2211. [CrossRef]
Balat, M. , 2010, “ Potential Alternatives to Edible Oils for Biodiesel Production—A Review of Current Work,” Energy Convers. Manage., 52(2), pp. 1479–1492. [CrossRef]
Pinto, A. , Guarieiro, L. , Rezende, M. , Ribeiro, N. , Torres, E. , Lopes, W. , Pereira, P. , and Andrade, J. , 2005, “ Biodiesel: An Overview,” J. Braz. Chem. Soc., 16(6b), pp. 1313–1330. [CrossRef]
Knothe, G. , Krahl, J. , and Gerpen, J. V. , 2010, The Biodiesel Handbook, AOCS Press, Champaign, IL.
Mangus, M. , Kiani, F. , Mattson, J. , Depcik, C. , Peltier, E. , and Stagg-Williams, S. , 2014, “ Comparison of Neat Biodiesels and ULSD in an Optimized Single-Cylinder Diesel Engine With Electronically-Controlled Fuel Injection,” Energy Fuels, 28(6), pp. 3849–3862. [CrossRef]
Hill, J. , Nelson, E. , Tilman, D. , Polasky, S. , and Tiffany, D. , 2006, “ Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels,” Proc. Natl. Acad. Sci., 103(30), pp. 11206–11210. [CrossRef]
Zhang, Y. , Dubé, M. A. , Mclean, D. D. , and Kates, M. , 2003, “ Biodiesel Production From Waste Cooking Oil—1: Process Design and Technological Assessment,” Bioresour. Technol., 89(1), pp. 1–16. [CrossRef] [PubMed]
Nichele, V. , Signoretto, M. , Menegazzo, F. , Gallo, A. , Dal Santo, V. , Cruciani, G. , and Cerrato, G. , 2012, “ Glycerol Steam Reforming for Hydrogen Production: Design of Ni Supported Catalysts,” Appl. Catal. B: Environ., 111–112, pp. 225–232. [CrossRef]
National Biodiesel Board, 2017, “ Production Statistics,” National Biodiesel Board, Jefferson City, MO, accessed Apr. 5, 2018, http://biodiesel.org/production/production-statistics
Stelmachowski, M. , 2011, “ Utilization of Glycerol, a By-Product of the Transestrification Process of Vegetable Oils: A Review,” Ecol. Chem. Eng. S, 18(1), pp. 9–30. https://www.researchgate.net/publication/279574383_Utilization_of_glycerol_a_by-product_of_the_transestrification_process_of_vegetable_oils_A_review
Ayoub, M. , and Abdullah, A. Z. , 2012, “ Critical Review on the Current Scenario and Significance of Crude Glycerol Resulting From Biodiesel Industry Towards More Sustainable Renewable Energy Industry,” Renewable Sustainable Energy Rev., 16(5), pp. 2671–2686. [CrossRef]
Bart, J. C. J. , Palmeri, N. , and Cavallaro, S. , 2010, Biodiesel Science and Technology: From Soil to Oil, Woodhead Publishing Limited, Cambridge, UK. [CrossRef]
Biodiesel Magazine, 2016, “ U.S. Biodiesel Plants,” Biodiesel Magazine, Grand Forks, ND, accessed Dec. 13, 2017, http://www.biodieselmagazine.com/plants/listplants/USA/
Irwin, S. , 2014, “ Understanding the Behavior of Biodiesel RINs Prices,” Farmdoc Daily, 4, p. 196. http://farmdocdaily.illinois.edu/2014/10/understanding-behavior-of-biodiesel-rins-prices.html
Kinoshita, E. , Hamasaki, K. , Jaqin, C. , and Takasaki, K. , 2004, “ Combustion Characteristics for Diesel Engines With Emulsified Biodiesel Without Adding Emulsifier,” SAE Paper No. 2004-01-1860.
Thompson, J. C. , and He, B. B. , 2006, “ Characterization of Crude Glycerol From Biodiesel Production From Multiple Feedstocks,” Appl. Eng. Agric., 22(2), pp. 261–265. [CrossRef]
Segur, J. B. , and Oberstar, H. E. , 1951, “ Viscosity of Glycerol and Its Aqueous Solutions,” Ind. Eng. Chem., 43(9), pp. 2117–2120. [CrossRef]
Crnkovic, P. M. , Koch, C. , Ávila, I. , Mortari, D. A. , Cordoba, A. M. , and Moreira Dos Santos, A. , 2012, “ Determination of the Activation Energies of Beef Tallow and Crude Glycerin Combustion Using Thermogravimetry,” Biomass Bioenergy, 44, pp. 8–16. [CrossRef]
Pandey, R. K. , Rehman, A. , and Sarviya, R. M. , 2012, “ Impact of Alternative Fuel Properties on Fuel Spray Behavior and Atomization,” Renewable Sustainable Energy Rev., 16(3), pp. 1762–1778. [CrossRef]
Adhikari, S. , Fernando, S. , Gwaltney, S. R. , To, S. D. F. , Bricka, R. M. , Steele, P. H. , and Haryanto, A. , 2007, “ A Thermodynamic Analysis of Hydrogen Production by Steam Reforming of Glycerol,” Int. J. Hydrogen Energy, 32(14), pp. 2875–2880. [CrossRef]
Bohon, M. D. , Metzger, B. A. , Linak, W. P. , King, C. J. , and Roberts, W. L. , 2011, “ Glycerol Combustion and Emissions,” Proc. Combust. Inst., 33(2), pp. 2717–2724. [CrossRef]
Steinmetz, S. A. , Herrington, J. S. , Winterrowd, C. K. , Roberts, W. L. , Wendt, J. O. L. , and Linak, W. P. , 2013, “ Crude Glycerol Combustion: Particulate, Acrolein, and Other Volatile Organic Emissions,” Proc. Combust. Inst., 34(2), pp. 2749–2757. [CrossRef]
Simmons, B. M. , 2011, “ Atomization and Combustion of Liquid Biofuels,” Ph.D. dissertation, University of Alabama, Tuscaloosa, AL.
Kundu, P. , 2012, “ Gas Turbine Combustion Chamber Design for Viscous Fuels,” M.S. thesis, North Carolina State University, Raleigh, NC. http://www.lib.ncsu.edu/resolver/1840.16/7883
Authayanun, S. , Arpornwichanop, A. , Paengjuntuek, W. , and Assabumrungrat, S. , 2010, “ Thermodynamic Study of Hydrogen Production From Crude Glycerol Autothermal Reforming for Fuel Cell Applications,” Int. J. Hydrogen Energy, 35(13), pp. 6617–6623. [CrossRef]
Wang, X. , Li, S. , Wang, H. , Liu, B. , and Ma, X. , 2008, “ Thermodynamic Analysis of Glycerin Steam Reforming,” Energy Fuels, 22(6), pp. 4285–4291. [CrossRef]
Yang, G. , Yu, H. , Peng, F. , Wang, H. , Yang, J. , and Xie, D. , 2011, “ Thermodynamic Analysis of Hydrogen Generation Via Oxidative Steam Reforming of Glycerol,” Renewable Energy, 36(8), pp. 2120–2127. [CrossRef]
Özgür, D. Ö. , and Uysal, B. Z. , 2011, “ Hydrogen Production by Aqueous Phase Catalytic Reforming of Glycerine,” Biomass Bioenergy, 35(2), pp. 822–826. [CrossRef]
Adhikari, S. , Fernando, S. D. , and Haryanto, A. , 2009, “ Hydrogen Production From Glycerol: An Update,” Energy Convers. Manage., 50(10), pp. 2600–2604. [CrossRef]
Cecrle, E. , Depcik, C. , Guo, J. , and Peltier, E. , 2012, “ Analysis of the Effects of Reformate (Hydrogen/Carbon Monoxide) as an Assistive Fuel on the Performance and Emissions of Used Canola-Oil Biodiesel,” Int. J. Hydrogen Energy, 37(4), pp. 3510–3527. [CrossRef]
Mattson, J. , Langness, C. , Niles, B. , and Depcik, C. , 2016, “ Usage of Glycerin-Derived, Hydrogen-Rich Syngas Augmented by Soybean Biodiesel to Power a Biodiesel Production Facility,” Int. J. Hydrogen Energy, 41(38), pp. 17132–17144. [CrossRef]
Brusca, S. , Chiodo, V. , Galvagno, A. , Lanzafame, R. , and Garrano, A. M. C. , 2014, “ Analysis of Reforming Gas Combustion in Internal Combustion Engine,” Energy Procedia, 45(Suppl. C), pp. 899–908. [CrossRef]
Brusca, S. , Galvagno, A. , Lanzafame, R. , Garrano, A. M. C. , and Messina, M. , 2015, “ Performance Analysis of Biofuel Fed Gas Turbine,” Energy Procedia, 81(Suppl. C), pp. 493–504. [CrossRef]
Noronha, F. B. , Shamsi, A. , Taylor, C. , Fendley, E. C. , Stagg-Williams, S. , and Resasco, D. E. , 2003, “ Catalytic Performance of Pt/ZrO2 and Pt/Ce-ZrO2 Catalysts on CO2 Reforming of CH4 Coupled With Steam Reforming or Under High Pressure,” Catal. Lett., 90(1–2), pp. 13–21. [CrossRef]
Gutiérrez Ortiz, F. J. , Serrera, A. , Galera, S. , and Ollero, P. , 2013, “ Methanol Synthesis From Syngas Obtained by Supercritical Water Reforming of Glycerol,” Fuel, 105, pp. 739–751. [CrossRef]
Pickett, D. , 2013, “ Combustion of Reformed Propane as Segue to Glycerin Reformation,” ASME Paper No IMECE2013-62355.
Cheng, C. K. , Foo, S. Y. , and Adesina, A. A. , 2010, “ H2-Rich Synthesis Gas Production Over Co/Al2O3 Catalyst Via Glycerol Steam Reforming,” Catal. Commun., 12(4), pp. 292–298. [CrossRef]
Cheng, C. K. , Foo, S. Y. , and Adesina, A. A. , 2011, “ Carbon Deposition on Bimetallic Co–Ni/Al2O3 Catalyst During Steam Reforming of Glycerol,” Catal. Today, 164(1), pp. 268–274. [CrossRef]
Pompeo, F. , Santori, G. , and Nichio, N. N. , 2010, “ Hydrogen and/or Syngas From Steam Reforming of Glycerol. Study of Platinum Catalysts,” Int. J. Hydrogen Energy, 35(17), pp. 8912–8920. [CrossRef]
Chiodo, V. , Freni, S. , Galvagno, A. , Mondello, N. , and Frusteri, F. , 2010, “ Catalytic Features of Rh and Ni Supported Catalysts in the Steam Reforming of Glycerol to Produce Hydrogen,” Appl. Catal. A: General, 381(1–2), pp. 1–7. [CrossRef]
Liu, Y. , Farrauto, R. , and Lawal, A. , 2013, “ Autothermal Reforming of Glycerol in a Dual Layer Monolith Catalyst,” Chem. Eng. Sci., 89(0), pp. 31–39. [CrossRef]
Bartholomew, C. , and Farrauto, R. , 2006, Fundamentals of Industrial Catalytic Processes, Wiley, Hoboken, NJ.
Iriondo, A. , Barrio, V. L. , Cambra, J. F. , Arias, P. L. , Guemez, M. B. , Sanchez-Sanchez, M. C. , Navarro, R. M. , and Fierro, J. L. G. , 2010, “ Glycerol Steam Reforming Over Ni Catalysts Supported on Ceria and Ceria-Promoted Alumina,” Int. J. Hydrogen Energy, 35(20), pp. 11622–11633. [CrossRef]
Wang, S. , and Lu, G. Q. , 1998, “ Reforming of Methane With Carbon Dioxide Over Ni/Al2O3 Catalysts: Effect of Nickel Precursor,” Appl. Catal. A: General, 169(2), pp. 271–280. [CrossRef]
Kim, P. , Kim, H. , Joo, J. B. , Kim, W. , Song, I. K. , and Yi, J. , 2006, “ Effect of Nickel Precursor on the Catalytic Performance of Ni/Al2O3 Catalysts in the Hydrodechlorination of 1,1,2-Trichloroethane,” J. Mol. Catal. A: Chem., 256(1–2), pp. 178–183. [CrossRef]
Chen, I. , Lin, S. Y. , and Shiue, D. W. , 1988, “ Calcination of Nickel/Alumina Catalysts,” Ind. Eng. Chem. Res., 27(6), pp. 926–929. [CrossRef]
Mansaray, K. G. , Ghaly, A. E. , Al-Taweel, A. M. , Ugursal, V. I. , and Hamdullahpur, F. , 2000, “ Mathematical Modeling of a Fluidized Bed Rice Husk Gasifier—Part III: Model Verification,” Energy Sources, 22(3), pp. 281–296. [CrossRef]
Nikoo, M. B. , and Mahinpey, N. , 2008, “ Simulation of Biomass Gasification in Fluidized Bed Reactor Using Aspen plus,” Biomass Bioenergy, 32(12), pp. 1245–1254. [CrossRef]
Wang, W. , 2010, “ Thermodynamic Analysis of Glycerol Partial Oxidation for Hydrogen Production,” Fuel Process. Technol., 91(11), pp. 1401–1408. [CrossRef]
Iriondo, A. , Barrio, V. L. , Cambra, J. F. , Arias, P. L. , Guemez, M. B. , Navarro, R. M. , Sanchez-Sanchez, M. C. , and Fierro, J. L. G. , 2009, “ Influence of La2O3 Modified Support and Ni and Pt Active Phases on Glycerol Steam Reforming to Produce Hydrogen,” Catal. Commun., 10(8), pp. 1275–1278. [CrossRef]
Slinn, M. , Kendall, K. , Mallon, C. , and Andrews, J. , 2008, “ Steam Reforming of Biodiesel By-Product to Make Renewable Hydrogen,” Bioresour. Technol., 99(13), pp. 5851–5858. [CrossRef] [PubMed]
Silvey, L. , 2011, “ Hydrogen and Syngas Production from Biodiesel Derived Crude Glycerol,” M.Sc. thesis, University of Kansas, Lawrence, KS. https://kuscholarworks.ku.edu/handle/1808/9697
Glenn Research Center, 2015, “ NASA Chemical Equilibrium with Applications,” Glenn Research Center, Cleveland, OH, accessed Apr. 5, 2018, https://www.grc.nasa.gov/www/CEAWeb/ceaHome.htm
Chen, T. , Wang, W. G. , Miao, H. , Li, T. , and Xu, C. , 2011, “ Evaluation of Carbon Deposition Behavior on the Nickel/Yttrium-Stabilized Zirconia Anode-Supported Fuel Cell Fueled With Simulated Syngas,” J. Power Sources, 196(5), pp. 2461–2468. [CrossRef]
Czekaj, I. , Struis, R. , Wambach, J. , and Biollaz, S. , 2011, “ Sulphur Poisoning of Ni Catalysts Used in the SNG Production From Biomass: Computational Studies,” Catal. Today, 176(1), pp. 429–432. [CrossRef]
Hashemnejad, S. M. , and Parvari, M. , 2011, “ Deactivation and Regeneration of Nickel-Based Catalysts for Steam-Methane Reforming,” Chin. J. Catal., 32(1–2), pp. 273–279. [CrossRef]
Sanchez, E. A. , and Comelli, R. A. , 2012, “ Hydrogen by Glycerol Steam Reforming on a Nickel–Alumina Catalyst: Deactivation Processes and Regeneration,” Int. J. Hydrogen Energy, 37(19), pp. 14740–14746. [CrossRef]
Valliyappan, T. , Ferdous, D. , Bakhshi, N. N. , and Dalai, A. K. , 2008, “ Production of Hydrogen and Syngas Via Steam Gasification of Glycerol in a Fixed-Bed Reactor,” Top. Catal., 49(1–2), pp. 59–67. [CrossRef]
Heywood, J. B. , 1988, Internal Combustion Engine Fundamentals, McGraw-Hill, New York.


Grahic Jump Location
Fig. 1

Complete flow structure of the reformer, engine, and generator setup (note: pressure regulators are not shown)

Grahic Jump Location
Fig. 3

Predicted syngas energy content in kW as a function of air and glycerin/water flow rates with successful combustion points indicated in red

Grahic Jump Location
Fig. 4

In-cylinder pressure comparison at (a) no load, (b) one load, and (c) two loads between PP and the syngas created from the reformed food-grade glycerin/water mixture

Grahic Jump Location
Fig. 2

Effective syngas lower heating value map in MJ/kg using equilibrium predictions



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In