0
Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

Prediction of CO and NOx Pollutants in a Stratified Bluff Body Burner

[+] Author and Article Information
Pascal Gruhlke

Chair of Fluid Dynamics,
Institute for Combustion and Gas Dynamics,
University of Duisburg-Essen,
Duisburg 47057, Germany
e-mail: pascal.gruhlke@uni-due.de

Fabian Proch

Chair of Fluid Dynamics,
Institute for Combustion and Gas Dynamics,
University of Duisburg-Essen,
Duisburg 47057, Germany
e-mail: fabian.proch@uni-due.de

Andreas M. Kempf

Chair of Fluid Dynamics,
Institute for Combustion and Gas Dynamics,
University of Duisburg-Essen,
Duisburg 47057, Germany
e-mail: andreas.kempf@uni-due.de

Stefan Dederichs

Siemens AG,
Muelheim an der Ruhr 45473, Germany
e-mail: stefan.dederichs@siemens.com

Christian Beck

Siemens AG,
Muelheim an der Ruhr 45473, Germany
e-mail: beckchristian@siemens.com

Enric Illana Mahiques

Queen Mary University of London,
London E1 4NS, UK
e-mail: e.illanamahiques@qmul.ac.uk

1Corresponding author.

Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received June 8, 2017; final manuscript received July 5, 2017; published online June 25, 2018. Editor: David Wisler.

J. Eng. Gas Turbines Power 140(10), 101502 (Jun 25, 2018) (9 pages) Paper No: GTP-17-1204; doi: 10.1115/1.4039833 History: Received June 08, 2017; Revised July 05, 2017

The major exhaust gas pollutants from heavy duty gas turbine engines are CO and NOx. The difficulty of predicting the concentration of these combustion products originates from their wide range of chemical time scales. In this paper, a combustion model that includes the prediction of the carbon monoxide and nitric oxide emissions is tested. Large eddy simulations (LES) are performed using a compressible code (OpenFOAM). A modified flamelet generated manifolds (FGM) approach is applied with an artificially thickened flame approach (ATF) to resolve the flame on the numerical grid, with a flame sensor to ensure that the flame is only thickened in the flame region. For the prediction of the CO and NOx emissions, pollutant species transport equations and a second, CO based, progress variable are introduced for the flame burnout zone to account for slow chemistry effects. For the validation of the models, the Cambridge burner of Sweeney et al. (2012, “The Structure of Turbulent Stratified and Premixed Methane/Air Flames—I: Non-Swirling Flows,” Combust. Flame, 159, pp. 2896–2911; 2012, “The Structure of Turbulent Stratified and Premixed Methane/Air Flames—II: Swirling Flows,” Combust. Flame, 159, pp. 2912–2929.) is employed, as both carbon monoxide and nitric oxide [Apeloig et al. (2016, “PLIF Measurements of Nitric Oxide and Hydroxyl Radicals Distributions in Swirl Stratified Premixed Flames,” 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, July 4–7.)] data are available.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

van Oijen, J. A. , and de Goey, L. P. H. , 2000, “ Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds,” Combust. Sci. Technol., 161(1), pp. 113–137. [CrossRef]
van Oijen, J. A. , Bastiaans, R. J. M. , and de Goey, L. P. H. , 2007, “ Low-Dimensional Manifolds in Direct Numerical Simulations of Premixed Turbulent Flames,” Proc. Combust. Inst., 31(1), pp. 1377–1384. [CrossRef]
van Oijen, J. A. , Donini, A. , Bastiaans, R. J. M. , ten Thije Boonkkamp, J. H. M. , and de Goey, L. P. H. , 2016, “ State-of-the-Art in Premixed Combustion Modeling Using Flamelet Generated Manifolds,” Prog. Energy Combust. Sci., 57, pp. 30–74. [CrossRef]
Gicquel, O. , Darabiha, N. , and Thévenin, D. , 2000, “ Laminar Premixed Hydrogen/Air Counterflow Flame Simulations Using Flame Prolongation of ILDM With Differential Diffusion,” Proc. Combust. Inst., 28(2), pp. 1901–1908. [CrossRef]
Fiorina, B. , Baron, R. , Gicquel, O. , Thevenin, D. , Carpentier, S. , and Darabiha, N. , 2003, “ Modelling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM,” Combust. Theory Modell., 7(3), pp. 449–470. [CrossRef]
Fiorina, B. , Mercier, R. , Kuenne, G. , Ketelheun, A. , Avdić, A. , Janicka, J. , Geyer, D. , Dreizler, A. , Alenius, E. , Duwig, C. , Trisjono, P. , Kleinheinz, K. , Kang, S. , Pitsch, H. , Proch, F. , Cavallo Marincola, F. , and Kempf, A. M. , 2015, “ Challenging Modeling Strategies for Les of Non-Adiabatic Turbulent Stratified Combustion,” Combust. Flame, 162(11), pp. 4264–4282. [CrossRef]
Proch, F. , and Kempf, A. M. , 2014, “ Numerical Analysis of the Cambridge Stratified Flame Series Using Artificial Thickened Flame LES With Tabulated Premixed Flame Chemistry,” Combust. Flame, 161(10), pp. 2627–2646. [CrossRef]
Proch, F. , and Kempf, A. M. , 2015, “ Modeling Heat Loss Effects in the Large Eddy Simulation of a Model Gas Turbine Combustor With Premixed Flamelet Generated Manifolds,” Proc. Combust. Inst., 35(3), pp. 3337–3345. [CrossRef]
See, Y. C. , and Ihme, M. , 2015, “ Large Eddy Simulation of a Partially-Premixed Gas Turbine Model Combustor,” Proc. Combust. Inst., 35(2), pp. 1225–1234. [CrossRef]
Rieth, M. , Proch, F. , Rabaçal, M. , Franchetti, B. M. , Cavallo Marincola, F. , and Kempf, A. M. , 2016, “ Flamelet LES of a Semi-Industrial Pulverized Coal Furnace,” Combust. Flame, 173, pp. 39–56. [CrossRef]
Pitsch, H. , 2002, “ Improved Pollutant Predictions in Large-Eddy Simulations of Turbulent Non-Premixed Combustion by Considering Scalar Dissipation Rate Fluctuations,” Proc. Combust. Inst., 29(2), pp. 1971–1978.
Kempf, A. M. , Flemming, F. , and Janicka, J. , 2005, “ Investigation of Lengthscales, Scalar Dissipation, and Flame Orientation in a Piloted Diffusion Flame by LES,” Proc. Combust. Inst., 30(1), pp. 557–565. [CrossRef]
Eggenspieler, G. , and Menon, S. , 2004, “ Large-Eddy Simulation of Pollutant Emission in a Doe-Hat Combustor,” J. Propul. Power, 20(6), pp. 1076–1085. [CrossRef]
Bulat, G. , Jones, W. P. , and Marquis, A. J. , 2014, “ NO and CO Formation in an Industrial Gas-Turbine Combustion Chamber Using LES With the Eulerian Sub-Grid PDF Method,” Combust. Flame, 161(7), pp. 1804–1825. [CrossRef]
Collonval, F. , 2015, “ Modeling of Auto-Ignition and NOx Formation in Turbulent Reacting Flows,” Ph.D thesis, Technische Universität München, Munich, Germany. https://www.tfd.mw.tum.de/fileadmin/w00bsb/www/Forschung/Dissertationen/Collonval_2015_Modeling_of_auto-ignition_and_NOx_formation_in_turbulent_reacting_flows.pdf
Locci, C. , Colin, O. , Poitou, D. , and Mauß, F. , 2015, “ A Tabulated, Flamelet Based NO Model for Large Eddy Simulations of Non Premixed Turbulent Jets With Enthalpy Loss,” Flow, Turbul. Combust., 94(4), pp. 691–729. [CrossRef]
Jaravel, T. , Riber, E. , Cuenot, B. , and Bulat, G. , 2016, “ Large Eddy Simulation of an Industrial Gas Turbine Combustor Using Reduced Chemistry With Accurate Pollutant Prediction,” Proc. Combust. Inst., 36(3), pp. 3817–3825. [CrossRef]
Wegner, B. , Gruschka, U. , Krebs, W. , Egorov, Y. , Forkel, H. , Ferreira, J. , and Aschmoneit, K. , 2011, “ CFD Prediction of Partload CO Emissions Using a Two-Timescale Combustion Model,” ASME J. Eng. Gas Turbines Power, 133(7), p. 071502. [CrossRef]
Ketelheun, A. , Olbricht, C. , Hahn, F. , and Janicka, J. , 2011, “ NO Prediction in Turbulent Flames Using LES/FGM With Additional Transport Equations,” Proc. Combust. Inst., 33(2), pp. 2975–2982. [CrossRef]
Ketelheun, A. , Aschmoneit, K. , and Janicka, J. , 2012, “ CO Prediction in LES of Turbulent Flames With Additional Modeling of the Chemical Source Term,” ASME Paper No. GT2012–69001.
Dederichs, S. , Zarzalis, N. , and Beck, C. , 2015, “ Validation of a Novel LES Approach Using Tabulated Chemistry for Thermoacoustic Instability Prediction in Gas Turbines,” ASME Paper No. GT2015-43502.
Bradley, D. , 1992, “ How Fast Can We Burn?,” Symp. (Int.) Combust., 24(1), pp. 247–262. [CrossRef]
Wang, G. , Boileau, M. , and Veynante, D. , 2011, “ Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion,” Combust. Flame, 158(11), pp. 2199–2213. [CrossRef]
Sweeney, M. S. , Hochgreb, S. , Dunn, M. J. , and Barlow, R. S. , 2012, “ The Structure of Turbulent Stratified and Premixed Methane/Air Flames—I: Non-Swirling Flows,” Combust. Flame, 159(9), pp. 2896–2911. [CrossRef]
Sweeney, M. S. , Hochgreb, S. , Dunn, M. J. , and Barlow, R. S. , 2012, “ The Structure of Turbulent Stratified and Premixed Methane/Air Flames—II: Swirling Flows,” Combust. Flame, 159(9), pp. 2912–2929. [CrossRef]
Mercier, R. , Fiorina, B. , Proch, F. , and Kempf, A. M. , 2013, “ Numerical and Modeling Strategies for the Simulation of the Cambridge Stratified Flame Series,” Eighth International Symposium on Turbulence and Shear Flow Phenomena (TSFP), Poitiers, France, Aug. 28–30. http://www.tsfp-conference.org/proceedings/2013/v1/comb2a.pdf
Mercier, R. , Schmitt, T. , Veynante, D. , and Fiorina, B. , 2015, “ The Influence of Combustion SGS Submodels on the Resolved Flame Propagation. Application to the LES of the Cambridge Stratified Flames,” Proc. Combust. Inst., 35(2), pp. 1259–1267. [CrossRef]
Nambully, S. , Domingo, P. , Moureau, V. , and Vervisch, L. , 2014, “ A Filtered-Laminar-Flame Pdf Sub-Grid Scale Closure for LES of Premixed Turbulent Flames—Part I: Formalism and Application to a Bluff-Body Burner With Differential Diffusion,” Combust. Flame, 161(7), pp. 1756–1774. [CrossRef]
Nambully, S. , Domingo, P. , Moureau, V. , and Vervisch, L. , 2014, “ A Filtered-Laminar-Flame PDF Sub-Grid-Scale Closure for LES of Premixed Turbulent Flames—II: Application to a Stratified Bluff-Body Burner,” Combust. Flame, 161(7), pp. 1775–1791. [CrossRef]
Brauner, T. , Jones, W. P. , and Marquis, A. J. , 2016, “ LES of the Cambridge Stratified Swirl Burner Using a Sub-Grid PDF Approach,” Flow Turbul. Combust., 96(4), pp. 965–985. [CrossRef]
Proch, F. , Domingo, P. , Vervisch, L. , and Kempf, A. M. , 2017, “ Flame Resolved Simulation of a Turbulent Premixed Bluff-Body Burner Experiment—Part I: Analysis of the Reaction Zone Dynamics With Tabulated Chemistry,” Combust. Flame, 180, pp. 321–339.
Proch, F. , Domingo, P. , Vervisch, L. , and Kempf, A. M. , 2017, “ Flame Resolved Simulation of a Turbulent Premixed Bluff-Body Burner Experiment—Part II: A-Priori and A-Posteriori Investigation of Sub-Grid Scale Wrinkling Closures in the Context of Artificially Thickened Flame Modeling,” Combust. Flame, 180, pp. 340–350. [CrossRef]
Apeloig, J. , Gautier, P. , Salaün, E. , Barviau, B. , Godard, G. , Hochgreb, S. , and Grisch, F. , 2016, “ PLIF Measurements of Nitric Oxide and Hydroxyl Radicals Distributions in Swirled Stratified Premixed Flames,” 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, July 4–7.
Dederichs, S. , 2016, “ Numerical Modeling of Emissions and Thermoacoustics in Heavy-Duty Gas Turbine Combustion Systems,” Ph.D. thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany.
Mahiques, E. I. , Dederichs, S. , Beck, C. , Kaufmann, P. , and Kok, J. B. W. , 2017, “ Coupling Multicomponent Droplet Evaporation and Tabulated Chemistry Combustion Models for Large-Eddy Simulations,” Int. J. Heat Mass Transfer, 104, pp. 51–70. [CrossRef]
Mahiques, E. I. , 2017, “ Development of Spray and Combustion Models for the Simulation of Gas Turbine Combustion Systems,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
Peters, N. , 1988, “ Laminar Flamelet Concepts in Turbulent Combustion,” Symp. (Int.) Combust., 21(1), pp. 1231–1250. [CrossRef]
Colin, O. , Ducros, F. , Veynante, D. , and Poinsot, T. J. , 2000, “ A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion,” Phys. Fluids, 12(7), pp. 1843–1863. [CrossRef]
Legier, J. P. , Poinsot, T. , and Veynante, D. , 2000, “ Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion,” Center for Turbulence Research Summer Program, Stanford, CA, pp. 157–168. https://www.researchgate.net/publication/265741039_Dynamically_thickened_flame_LES_model_for_premixed_and_non-premixed_turbulent_combustion
Charlette, F. , Meneveau, C. , and Veynante, D. , 2002, “ A Power-Law Flame Wrinkling Model for Les of Premixed Turbulent Combustion—Part I: Non-Dynamic Formulation and Initial Tests,” Combust. Flame, 131(1–2), pp. 159–180. [CrossRef]
Barlow, R. S. , Dunn, M. J. , Sweeney, M. S. , and Hochgreb, S. , 2012, “ Effects of Preferential Transport in Turbulent Bluff-Body-Stabilized Lean Premixed CH4/Air Flames,” Combust. Flame, 159(8), pp. 2563–2575. [CrossRef]
Winden, B. , 2014, “ Powering Performance of a Self-Propelled Ship in Waves,” Ph.D. thesis, University of Southampton, Southampton, UK. https://eprints.soton.ac.uk/390102/
Klein, M. , Sadiki, A. , and Janicka, J. , 2003, “ A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations,” J. Comput. Phys., 186(2), pp. 652–665. [CrossRef]
Kempf, A. M. , Wysocki, S. , and Pettit, M. , 2012, “ An Efficient, Parallel Low-Storage Implementation of Klein's Turbulence Generator for LES and DNS,” Comput. Fluids, 60, pp. 58–60. [CrossRef]
Celik, I. , Cehreli, Z. , and Yavuz, I. , 2005, “ Index of Resolution Quality for Large Eddy Simulations,” ASME J. Fluids Eng., 127(5), pp. 949–958. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

Impact of the flame thickening factor on the pollutant formation. Results from a 1D laminar, premixed, freely propagating flame from Cantera are compared to flames with different flame thickening factors.

Grahic Jump Location
Fig. 3

Schematic of the axisymmetric Cambridge burner geometry. Units are in mm.

Grahic Jump Location
Fig. 1

Spatial evolution of the temperature, the CO source term, and mass fraction for a 1D laminar, premixed, freely propagating flame for Φ=0.3, T=700 K, and p=20 bar

Grahic Jump Location
Fig. 7

Radial profiles of the mean carbon dioxide, oxygen, and water mass fractions at different downstream locations comparing the two grids and wrinkling models with experiments

Grahic Jump Location
Fig. 4

Radial profiles of the axial velocity mean and rms values at different downstream locations comparing the two grids and wrinkling models with experiments

Grahic Jump Location
Fig. 5

Radial profiles of the equivalence ratio mean and rms values at different downstream locations comparing the two grids and wrinkling models with experiments

Grahic Jump Location
Fig. 6

Radial profiles of the temperature mean and rms values at different downstream locations comparing the two grids and wrinkling models with experiments

Grahic Jump Location
Fig. 8

Radial profiles of the carbon monoxide mass fraction mean values at different downstream locations comparing the two grids and wrinkling models with experiments

Grahic Jump Location
Fig. 9

Contour of the mean carbon monoxide mass fraction (left). Instantaneous contour of the nitric oxide distribution for the stratified case compared to experimental data (right). Left from the central line, measurement results are shown [3].

Grahic Jump Location
Fig. 10

LES quality index estimations of (un-)resolved turbulent kinetic energy on the coarse (left) and fine mesh (right)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In