[+] Author and Article Information
Brian T. Bohan

Air Force Institute of Technology, Wright-Patterson AFB, OH 45433

Marc D. Polanka

Air Force Institute of Technology, Wright-Patterson AFB, OH 45433

1Corresponding author.

ASME doi:10.1115/1.4040658 History: Received May 25, 2018; Revised June 06, 2018


The Ultra Compact Combustor (UCC) is an innovative combustor system alternative to traditional turbine engine combustors with the potential for engine efficiency improvements with a reduced volume. Historically, the UCC cavity had been configured such that highly centrifugally loaded combustion took place in a recessed circumferential cavity positioned around the outside diameter of the engine. One of the obstacles with this design was that the combustion products had to migrate radially across the span of a vane while being pushed downstream by a central core flow. This configuration proved difficult to produce a uniform temperature distribution at the first turbine rotor. The present study has taken a different spin on the implementation of circumferential combustion. Namely, it aims to combine the combustion and space saving benefits of the highly centrifugally loaded combustion of the UCC in a new combustor orientation that places the combustor axially upstream of the turbine versus radially outboard. An iterative design approach was used to computationally analyze this new geometry configuration with the goal of fitting within the casing of a JetCat P90RXi. This investigation revealed techniques for implementation of this concept including small-scale combustor centrifugal air loading development, maintaining combustor circumferential swirl, combustion stability, and fuel distribution are reported. The final combustor configuration was manufactured and experimentally tested, validating the computational results. Furthermore, dramatic improvements in the uniformity of the turbine inlet temperature profiles are revealed over historical UCC concepts.

Section 4: U. S. Gov Employees
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In