0
Research Papers: Gas Turbines: Turbomachinery

Design of the Purdue Experimental Turbine Aerothermal Laboratory for Optical and Surface Aerothermal Measurements

[+] Author and Article Information
G. Paniagua

School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: gpaniagua@me.com

D. Cuadrado

School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: gonza279@purdue.edu

J. Saavedra

School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: saavedra@purdue.edu

V. Andreoli

School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: vandreol@purdue.edu

T. Meyer

School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: trmeyer@purdue.edu

J. P. Solano

Departamento Ingeniería Térmica y de Fluidos,
Universidad Politécnica de Cartagena,
Cartagena, Murcia 30202, Spain
e-mail: juanp.solano@upct.es

R. Herrero

Departamento Ingeniería Térmica y de Fluidos,
Universidad Politécnica de Cartagena,
Cartagena, Murcia 30202, Spain
e-mail: ruth.herrero@upct.es

S. Meyer

School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47907
e-mail: meyerse@purdue.edu

D. Lawrence

Aerodyn Engineering Inc.,
Indianapolis, IN 46241
e-mail: dlawrence@aerodyneng.com

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received April 15, 2018; final manuscript received June 23, 2018; published online August 31, 2018. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(1), 012601 (Aug 31, 2018) (13 pages) Paper No: GTP-18-1170; doi: 10.1115/1.4040683 History: Received April 15, 2018; Revised June 23, 2018

Following three decades of research in short duration facilities, Purdue University has developed an alternative turbine facility in view of the modern technology in computational fluid mechanics, structural analysis, manufacturing, heating, control, and electronics. The proposed turbine facility can operate continuously and also perform transients, suited for precise heat flux, efficiency, and optical measurement techniques to advance turbine aerothermo-structural engineering. The facility has two different test sections, linear and annular, to service both fundamental and applied research. The linear test section is completely transparent for optical imaging and spectroscopy, aimed at technology readiness levels (TRLs) of 1–2. The annular test section was designed with optical access to perform proof of concepts as well as validation of turbine component performance for relevant nondimensional parameters at TRLs of 3–4. The large mass flow rate (28 kg/s) combined with a minimum hub to tip ratio of 0.85 allows high spatial resolution. The Reynolds number (Re) extends from 60,000 to 3,000,000, based on the vane outlet flow properties with an axial chord of 0.06 m and a turning angle of 72 deg. The pressure ratio can be independently adjusted, enabling testing from low subsonic to Mach 3.2. This paper provides a detailed description of the sequential design methodology from zero-dimensional to three-dimensional (3D) unsteady analysis as well as of the measurement techniques available in this turbine facility.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chana, K. , Cardwell, D. , and Jones, T. , 2013, “ A Review of the Oxford Turbine Research Facility,” ASME Paper No. GT2013-95687.
Dunn, M. , and Mathison, R. , 2013, “ History of Short Duration Measurement Programs Related to Gas Turbine Heat Transfer, Aerodynamics, and Aeroperformance at Calspan and OSU,” ASME Paper No. GT2013-94926.
Paniagua, G. , Sieverding, C. H. , and Arts, T. , 2013, “ Review of the Von Karman Institute Compression Tube Facility for Turbine Research,” ASME Paper No. GT2013-95984.
Anthony, R. J. , and Clark, J. P. , 2013, “ A Review of the AFRL Turbine Research Facility,” ASME Paper No. GT2013-94741.
Tiedemann, M. , and Kost, F. , 2001, “ Some Aspects of Wake-Wake Interactions regarding Turbine Stator Clocking,” ASME J. Turbomach., 123(3), pp. 526–533. [CrossRef]
Göttlich, E. , Woisetschläger, J. , Pieringer, P. , Hampel, B. , and Heitmeir, F. , 2005, “ Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Particle-Image-Velocimetry,” ASME J. Turbomach., 128(1), pp. 178–187. [CrossRef]
Sell, M. , Schlienger, J. , Pfau, A. , Treiber, M. , and Abhari, R. S. , 2001, “ The 2-Stage Axial Turbine Test Facility Lisa,” ASME Paper No. 2001-GT-0492.
Keith, B. D. , Basu, D. K. , and Steven, C. , 2000, “ Aerodynamic Test Results of Controlled Pressure Ratio Engine (Cope) Dual Spool Air Turbine Rotating Rig,” ASME Paper No. 2000-GT-0632.
Ma, R. , Morris, S. C. , and Corke, T. C. , 2006, “ Design of a Transonic Research Turbine Facility,” AIAA Paper No. 2006-1311.
Barringer, M. , Coward, A. , Clark, K. , and Thole, K. , 2014, “ The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer,” ASME Paper No. GT2014-25570.
Meyer, S. E. , Heister, S. D. , Slabaugh, C. , Lucht, R. P. , Pratt, A. , Gejji, R. M. , Bedard, M. , and Lemcherfi, A. , 2017, “ Design and Development of the High Pressure Combustion Laboratory at Purdue University,” AIAA Paper No. 2017-4965.
Casella, F. , Otter, M. , Proelss, K. , Richter, C. , and Tummescheit, H. , 2006, “ The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible Thermo-Fluid Pipe Networks,” International Modelica Conference, Vienna, Austria, Sept. 4–5, pp. 631–640. https://modelica.org/events/modelica2006/Proceedings/sessions/Session6b1.pdf
Andreoli, V. , Lavagnoli, S. , Paniagua, G. , and Villace, V. F. , 2016, “ Robust Model of a Transient Wind Tunnel for Off-Design Aerothermal Testing of Turbomachinery,” Measurement, 82, pp. 323–333. [CrossRef]
Morel, T. , 1975, “ Comprehensive Design of Axisymmetric Wind Tunnel Contractions,” ASME J. Fluids Eng., 97(2), pp. 225–233. [CrossRef]
Su, Y.-X. , 1995, “ Flow Analysis and Design of Three-Dimensional Wind Tunnel Contractions,” AIAA J., 29(11), pp. 1912–1920.
Mikhail, M. N. , 1979, “ Optimum Design of Wind Tunnel Contractions,” AIAA J., 17(5), pp. 471–477. [CrossRef]
Loehrke, R. I. , and Nagib, H. M. , 1972, “ Experiments on Management of Free-Stream Turbulence,” Illinois Institute of Technology Chicago, Chicago, IL, AGARD Report No. 598. http://www.dtic.mil/docs/citations/AD0749891
Pope, A. , and Goin, K. , 1978, High-Speed Wind Tunnel Testing, Wiley, New York.
Paniagua, G. , Iorio, M. , Vinha, N. , and Sousa, J. , 2014, “ Design and Analysis of Pioneering High Supersonic Axial Turbines,” Int. J. Mech. Sci., 89, pp. 65–77. [CrossRef]
Vinha, N. , Paniagua, G. , Sousa, J. , and Saracoglu, B. , 2016, “ Axial Bladeless Turbine Suitable for High Supersonic Flows,” J. Propul. Power, 32(4), pp. 975–983. [CrossRef]
Delhaye, D. , Paniagua, G. , Fernandez Oro, J. , and Dénos, R. , 2011, “ Enhanced Performance of Fast-Response 3-Hole Wedge Probes for Transonic Flows in Axial Turbomachinery,” Exp. Fluids, 50(1), pp. 163–177. [CrossRef]
Yasa, T. , and Paniagua, G. , 2012, “ Robust Procedure for Multi-Hole Probe Data Processing,” Flow Meas. Instrum., 26, pp. 46–54. [CrossRef]
Villafane, L. , and Paniagua, G. , 2013, “ Aero-Thermal Analysis of Shielded Fine Wire Thermocouples,” Int. J. Therm. Sci., 65, pp. 214–223. [CrossRef]
Yasa, T. , Paniagua, G. , and Dénos, R. , 2007, “ Application of Hot-Wire Anemometry in a Blow-down Turbine Facility,” ASME J. Eng. Gas Turbines Power, 129(2), pp. 420–427. [CrossRef]
Roediger, T. , Knauss, H. , Gaisbauer, U. , Kraemer, E. , Jenkins, S. , and von Wolfersdorf, J. , 2008, “ Time-Resolved Heat Transfer Measurements on the Tip Wall of Ribbed Channel Using a Novel Heat Flux Sensor- Part I: Sensor and Benchmarks,” ASME J. Turbomach., 130(1), p. 011018. [CrossRef]
Pinilla, V. , Solano, J. P. , Paniagua, G. , and Anthony, R. , 2012, “ Adiabatic Wall Temperature Evaluation in a High Speed Turbine,” ASME J. Heat Transfer, 134(9), p. 091601. [CrossRef]
Dénos, R. , and Sieverding, C. H. , 2007, “ Assessment of the Cold Wire Resistance Thermometer for High Speed Turbomachinery Applications,” ASME J. Turbomach., 119(1), pp. 140–148. [CrossRef]
Paniagua, G. , and Dénos, R. , 2002, “ Digital Compensation of Pressure Sensors in the Time Domain,” Exp. Fluids, 32(4), pp. 417–424. [CrossRef]
Sousa, J. , Villafane, L. , and Paniagua, G. , 2014, “ Thermal Analysis and Modeling of Surface Heat Exchangers Operating in the Transonic Regime,” Energy, 64, pp. 961–969. [CrossRef]
Schreivogel, P. , Paniagua, G. , and Bottini, H. , 2012, “ Pressure Sensitive Paint Techniques for Surface Pressure Measurements in Supersonic Flows,” Exp. Therm. Fluid Sci., 39, pp. 189–197. [CrossRef]
Villafane, L. , Paniagua, G. , Bonfanti, G. , and Yasa, T. , 2015, “ Local Surface Shear Stress Measurements From Oil Streaks Thinning Rate,” Sens. Actuators A: Phys., 223, pp. 31–39. [CrossRef]
Gord, J. , Gogineni, S. P. , Slipchenko, M. , Miller, J. D. , Meyer, T. R. , and Roy, S. , 2015, “ 10 kHz—1 MHz Rate Stereo Particle Image Velocimetry Enabled by Burst-Mode Lasers,” 11th International Symposium on Particle Image Velocimetry—PIV15, Santa Barbara, CA, Sept. 14–16.
Miller, J. D. , Jiang, N. , Slipchenko, M. N. , Mance, J. G. , Meyer, T. R. , Roy, S. , and Gord, J. R. , 2016, “ Spatiotemporal Analysis of Turbulent Jets Enabled by 100-kHz, 100-Ms Burst-Mode Particle Image Velocimetry,” Exp. Fluids, 57(12), p. 192. [CrossRef]
Melling, A. , 1997, “ Tracer Particles and Seeding for Particle Image Velocimetry,” Meas. Sci. Technol., 8(12), pp. 1406–1416. [CrossRef]
Beresh, S. J. , Wagner, J. L. , Henfling, J. F. , Spillers, R. W. , and Pruett, B. O. M. , 2016, “ Comparison of Pulse-Burst PIV Data to Simultaneous Conventional PIV Data,” AIAA Paper No. 2016-0789.
Demauro, E. P. , Wagner, J. L. , Beresh, S. J. , Farias, P. , and Pruett, B. , 2016, “ Measurements of Gas-Phase Velocity During Shock-Particle Interactions Using Pulse-Burst PIV,” AIAA Paper No. 2016-0793.
Jiang, N. , Webster, M. , Lempert, W. R. , Miller, J. D. , Meyer, T. R. , Ivey, C. B. , and Danehy, P. M. , 2011, “ MHz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging in a Mach 10 Hypersonic Wind Tunnel,” Appl. Opt., 50(4), pp. A20–A28. [CrossRef] [PubMed]
Danehy, P. , O'Byrne, S. , Houwing, A. F. J. , and Smith, D. , 2003, “ Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide,” AIAA J., 41(2), pp. 263–271. [CrossRef]
Dam, N. , Klein-Douwel, R. J. H. , Sijtsema, N. M. , and ter Meulen, J. J. , 2001, “ Nitric Oxide Flow Tagging in Unseeded Air,” Opt. Lett., 26(1), pp. 36–38. [CrossRef] [PubMed]
Miles, R. B. , Lempert, W. R. , and Zhang, B. , 1991, “ Turbulent Structure Measurements by RELIEF Flow Tagging,” Fluid Dyn. Res., 8(1–4), pp. 9–17. [CrossRef]
Pitz, R. W. , Wehrmeyer, J. A. , Ribarov, L. A. , Oguss, D. A. , Batliwala, F. , DeBarber, P. A. , Deusch, S. , and Dimotakis, P. E. , 2000, “ Unseeded Molecular Flow Tagging in Cold and Hot Flows Using Ozone and Hydroxyl Tagging Velocimetry,” Meas. Sci. Technol., 11(9), pp. 1259–1271. [CrossRef]
Michael, J. B. , Edwards, M. R. , Dogariu, A. , and Miles, R. B. , 2011, “ Femtosecond Laser Electronic Excitation Tagging for Quantitative Velocity Imaging in Air,” Appl. Opt., 50(26), pp. 5158–5162. [CrossRef] [PubMed]
Clemens, N. , and Mungal, M. , 1991, “ A Planar Mie Scattering Technique for Visualizing Supersonic Mixing Flows,” Exp. Fluids, 11(2–3), pp. 175–185. [CrossRef]
Dedic, C. E. , Miller, J. D. , and Meyer, T. R. , 2014, “ Dual-Pump Vibrational/Rotational Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering Temperature and Species Measurements,” Opt. Lett., 39(23), pp. 6608–6611. [CrossRef] [PubMed]
Bianchi, G. , Saracoglu, B. H. , Paniagua, G. , and Regert, T. , 2015, “ Experimental Analysis on the Effects of DC Arc Discharge at Various Flow Regimes,” Phys. Fluids, March, 27(3), p. 036102. [CrossRef]
Miles, R. B. , Smits, A. J. , Huntley, M. B. , Wu, P. , and Tolboom, R. , 2001, “ Three-Dimensional Imaging of Hypersonic Flow at MHz-Rate,” AIAA Paper No. 2001-846.
Fond, B. , Abram, C. , Heyes, A. L. , Kempf, A. M. , and Beyrau, F. , 2012, “ Simultaneous Temperature, Mixture Fraction and Velocity Imaging in Turbulent Flows Using Thermographic Phosphor Tracer Particles,” Opt. Express, 20(20), pp. 22118–22133. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 3

Modelica verification using experimental data from the von Karman Institute compression tube facility: comparison of (a) pressure, (b) temperature in the tube and in the test section, and (c) piston displacement

Grahic Jump Location
Fig. 4

Schematic of the Modelica wind tunnel model

Grahic Jump Location
Fig. 2

Schematic layout of the Purdue Experimental Turbine Aerothermal Laboratory

Grahic Jump Location
Fig. 1

Layout and aerial photograph of the new Zucrow Laboratories facility for studying aerothermal flows

Grahic Jump Location
Fig. 5

(a) Valve position, (b) mass flow, (c) pressure in the test section, and (d) pressure increase in the vacuum tank

Grahic Jump Location
Fig. 10

(a) Overall view of the linear test section, (b) optically accessible flow passage, (c) cross-sectional view, and (d) range of Reynolds and Mach numbers

Grahic Jump Location
Fig. 9

(a) Parameterization of the inlet contraction, (b) 2D velocity contour and streamlines in a 25 deg. contraction, (c) 2D velocity contour and streamlines in a 35 deg. contraction, (d) velocity profile at various contraction angles, and (e) effect of the Reynolds number

Grahic Jump Location
Fig. 11

(a) Annular test section measurement planes, (b) velocity profile at two axial locations, (c) stage velocity triangles, (d) absolute-relative velocities of a rotor row with a preswirler, (e) velocity triangle in a stationary rotor row with rotating preswirler, and (f) reverse rotation

Grahic Jump Location
Fig. 13

Mach-Re limits in subsonic operation (left) and operational range in subsonic conditions (right)

Grahic Jump Location
Fig. 6

Min-max temperature difference along the length of the piping downstream of the mixer

Grahic Jump Location
Fig. 7

(a) Settling chamber design with a tangential discharge, (b) settling chamber design with axial discharge, (c) settling chamber of the linear test section, and (d) settling chamber of the annular test section

Grahic Jump Location
Fig. 8

(a) Three-Dimensional mesh linear settling chamber, (b) velocity contour and stream lines with four radial discharge slots, (c) velocity contour and stream lines with eight radial discharge slots, and (d) velocity isocontours at several axial locations

Grahic Jump Location
Fig. 12

Annular test section: (a) overall layout of the optical windows, (b) frontal view of the test section, (c) meridional view, and (d) supersonic configuration

Grahic Jump Location
Fig. 14

Mach-Re limits in supersonic operation (left) and operational range in supersonic conditions (right)

Grahic Jump Location
Fig. 15

Overall view of the PETAL facility (top), CAD design of the wind tunnels (bottom left), and photo of the assembly in December 2017 (bottom right)

Grahic Jump Location
Fig. 16

Schematic of optical layout for 2D-3D imaging in the linear wind tunnel

Grahic Jump Location
Fig. 17

Schematic of optical layout for stereo imaging in the annular test section

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In